Skip to main content

Protocols for Dental-Related Stem Cells Isolation, Amplification and Differentiation

  • Chapter
  • First Online:
  • 1051 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

In this chapter we will discuss how to accommodate your research objectives to produce universal and scientifically relevant results by choosing a fitting research material and methods. We will start by exploring the character of various dental-related stem cell lineages through their lifecycle, following up with an overview of bioethics of stem cell research, the methods of tissue extraction and transport, tissue’s stem cells isolation, amplification, differentiation and differentiation evaluation; and finally arriving at methods of cryopreservation of the research material.

If I have seen further, it is by standing on the shoulders of giants. Isaac Newton

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The Stem Cell (2009) Retrieved September 28, 2015, from http://stemcells.nih.gov/info/scireport/pages/chapter1.aspx

  2. Malik M, Saini RS, Jain R, Laller S, Bahadurgarh H (2014) A comprehensive update: predecidous teeth (natal and neonatal). J Adv Med Dental Sci Res 2:2

    Google Scholar 

  3. Nelson SJ (2014) Wheeler’s dental anatomy, physiology and occlusion. Elsevier Health Sciences and occlusion. Elsevier Health Sciences, St. Louis, Missoury

    Google Scholar 

  4. Karaöz E, Doğan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Sarıboyacı AE (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133(1):95–112

    Google Scholar 

  5. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116

    Article  CAS  PubMed  Google Scholar 

  6. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100(10):5807–5812

    Google Scholar 

  7. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Wang S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One 1(1):e79

    Google Scholar 

  9. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Gehron Robey P, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183(12):7787–7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  12. Huang X, Saint-Jeannet JP (2004) Induction of the neural crest and the opportunities of life on the edge. Dev Biol 275(1):1–11

    Article  CAS  PubMed  Google Scholar 

  13. Handschel J, Meyer T, Wiesmann HP (2009) Fundamentals of tissue engineering and regenerative medicine. Springer, Heidelberg, p 360

    Google Scholar 

  14. Menicanin D, Mrozik KM, Wada N, Marino V, Shi S, Bartold PM, Gronthos S (2013) Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 23(9):1001–1011

    Article  PubMed Central  Google Scholar 

  15. Struys T, Moreels M, Martens W, Donders R, Wolfs E, Lambrichts I (2010) Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp-and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs 193(6):366–378

    Article  PubMed  Google Scholar 

  16. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1(1):e79

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U et al (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo-and neurogenesis. Pharmacogenomics J 10(2):105–113

    Article  CAS  PubMed  Google Scholar 

  18. Akpinar G, Kasap M, Aksoy A, Duruksu G, Gacar G, Karaoz E (2014) Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014:457059

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F et al (2007) Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329(2):283–294

    Article  PubMed  Google Scholar 

  20. Xu J, Wang W, Kapila Y, Lotz J, Kapila S (2008) Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev 18(3):487–496

    Article  PubMed Central  Google Scholar 

  21. Gao Y, Zhao G, Li D, Chen X, Pang J, Ke J (2014) Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int J Mol Sci 15(11):20982–20996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506

    Article  PubMed  Google Scholar 

  23. Wang JJ, Dong R, Wang LP, Wang JS, Du J, Wang SL et al (2015) Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla. Int J Clin Exp Med 8(2):2165

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Demirci S, Doğan A, Şişli B, Sahin F (2014) Boron increases the cell viability of mesenchymal stem cells after long-term cryopreservation. Cryobiology 68(1):139–146

    Article  CAS  PubMed  Google Scholar 

  25. El-Sayed KMF, Paris S, Graetz C, Kassem N, Mekhemar M, Ungefroren H et al (2015) Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS− cell populations. Int J Oral Sci 7(2):80–88

    Article  CAS  PubMed  Google Scholar 

  26. Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Muzio LL et al (2011) Dental pulp stem cells: osteogenic differentiation and gene expression. Ann N Y Acad Sci 1237(1):47–52

    Article  CAS  PubMed  Google Scholar 

  27. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56(7):709–721

    Article  CAS  PubMed  Google Scholar 

  28. Osathanon T, Sawangmake C, Nowwarote N, Pavasant P (2014) Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral Dis 20(4):352–358

    Article  CAS  PubMed  Google Scholar 

  29. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GTJ (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Article  PubMed  PubMed Central  Google Scholar 

  30. Karaöz E, Doğan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S et al (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133(1):95–112

    Article  PubMed  Google Scholar 

  31. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8(3):191–199

    Article  CAS  PubMed  Google Scholar 

  32. Zhang C, Lu Y, Zhang L, Liu Y, Zhou Y, Chen Y, Yu H (2015) Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells. Arch Med Sci 11(3):638

    Google Scholar 

  33. Zhang W, Walboomers XF, Van Kuppevelt TH, Daamen WF, Van Damme PA, Bian Z, Jansen JA (2008) In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2(2–3):117

    Article  CAS  PubMed  Google Scholar 

  34. Abe S, Hamada K, Yamaguchi S, Amagasa T, Miura M (2011) Characterization of the radioresponse of human apical papilla-derived cells. Stem Cell Res Ther 2(1):2

    Google Scholar 

  35. Taşlı PN, Doğan A, Demirci S, Şahin F (2016) Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology 68(2):319–329

    Article  PubMed  Google Scholar 

  36. d’Aquino R, Tirino V, Desiderio V, Studer M, De Angelis GC, Laino L et al (2011) Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. Eur Cell Mater 21:304–316

    PubMed  Google Scholar 

  37. Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM et al (2016) Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng 44:1908–20

    Article  PubMed  Google Scholar 

  38. Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, Politis P, Lambrichts I, Bronckaers A (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353(1):65–78

    Article  CAS  PubMed  Google Scholar 

  39. Bakopoulou A, Kritis A, Andreadis D, Papachristou E, Leyhausen G, Koidis P et al (2015) Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev 24(21):2496–2512

    Article  CAS  PubMed  Google Scholar 

  40. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969

    Article  PubMed  Google Scholar 

  41. Doğan A, Demirci S, Şahin F (2015) In vitro differentiation of human tooth germ stem cells into endothelial-and epithelial-like cells. Cell Biol Int 39(1):94–103

    Article  PubMed  Google Scholar 

  42. Huang GJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen G, Sun Q, Xie L, Jiang Z, Feng L, Yu M et al (2015) Comparison of the odontogenic differentiation potential of dental follicle, dental papilla, and cranial neural crest cells. J Endod 41(7):1091–1099

    Article  PubMed  Google Scholar 

  44. Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Nakahara T, Ishikawa H et al (2012) High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 38(4):475–480

    Article  PubMed  Google Scholar 

  45. Patil R, Kumar BM, Lee WJ, Jeon RH, Jang SJ, Lee YM et al (2014) Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res 320(1):92–107

    Article  CAS  PubMed  Google Scholar 

  46. Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S et al (2008) Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76(5):495–505

    Article  CAS  PubMed  Google Scholar 

  47. Ishkitiev N, Yaegaki K, Calenic B, Nakahara T, Ishikawa H, Mitiev V, Haapasalo M (2010) Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 36(3):469–474

    Article  PubMed  Google Scholar 

  48. Kawanabe N, Murata S, Murakami K, Ishihara Y, Hayano S, Kurosaka H et al (2010) Isolation of multipotent stem cells in human periodontal ligament using stage-specific embryonic antigen-4. Differentiation 79(2):74–83

    Article  CAS  PubMed  Google Scholar 

  49. Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A, Hwang YS (2012) Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev 18(3):235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paino F, Ricci G, De Rosa A, D’Aquino R, Laino L, Pirozzi G et al (2010) Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater 20:295–305

    CAS  PubMed  Google Scholar 

  51. Armiñán A, Gandía C, Bartual M, García-Verdugo JM, Lledó E, Mirabet V et al (2009) Cardiac differentiation is driven by NKX2. 5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev 18(6):907–918

    Article  PubMed  Google Scholar 

  52. Ishkitiev N, Yaegaki K, Kozhuharova A, Tanaka T, Okada M, Mitev V et al (2013) Pancreatic differentiation of human dental pulp CD117+ stem cells. Regen Med 8(5):597–612

    Article  CAS  PubMed  Google Scholar 

  53. Gomes JAP, Melo GB, Monteiro BG, Maranduba CCM, Fonseca SAS, Cerruti H et al (2007) Differentiation of immature adult stem cells isolated from human dental pulp into corneal ephitelium in an animal model of total limbal stem cell deficiency. Invest Ophthalmol Vis Sci 48(13):4436

    Google Scholar 

  54. Harris P, Nagy S (2009) Mosby’s dictionary of medicine, nursing and health professions. Elsevier, Australia

    Google Scholar 

  55. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GTJ (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Google Scholar 

  56. Tziafas D, Kodonas K (2010) Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 36(5):781–789

    Article  PubMed  Google Scholar 

  57. D’souza R (2002) Development of the pulpodentin complex. Seltzer and Bender’s dental pulp. Quintessence publishing Co, Inc., Hanover Park, pp 13–40

    Google Scholar 

  58. De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince JG, des Rieux A (2015) Dental apical papilla as therapy for spinal cord injury. J Dental Res 94(11):1575–1581

    Google Scholar 

  59. Mhaske S, Yuwanati MB, Mhaske A, Ragavendra R, Kamath K, Saawarn S (2013) Natal and neonatal teeth: an overview of the literature. ISRN Pediatrics

    Google Scholar 

  60. Rad MR (2014) Characteristics of dental follicle stem cells and their potential application for treatment of craniofacial defects (Doctoral dissertation, Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Science through The Department of Comparative Biomedical Sciences by Maryam Rezai Rad DDS, Tehran University of Medical Sciences)

    Google Scholar 

  61. Vishwakarma A, Sharpe P, Shi S, Ramalingam M (eds) (2014) Stem cell biology and tissue engineering in dental sciences. Academic Press, London, UK

    Google Scholar 

  62. Kawanabe N, Murata S, Murakami K, Ishihara Y, Hayano S, Kurosaka H, Kamioka H, Takano-Yamamoto T, Yamashiro T (2010) Isolation of multipotent stem cells in human periodontal ligament using stage-specific embryonic antigen-4. Differentiation 79(2):74–83

    Google Scholar 

  63. Mrozik K, Gronthos S, Shi S, Bartold PM (2010) A method to isolate, purify, and characterize human periodontal ligament stem cells. In: Oral biology. London, UK: Humana Press, pp 269–284

    Google Scholar 

  64. Karamzadeh R, Eslaminejad MB (2013) Dental-related stem cells and their potential in regenerative medicine pp 95–116 http://dx.doi.org/10.5772/55927

  65. Kimmelman J, Daley G (2015) Guidelines for stem cell science 2 and clinical translation-draft 2015. In: International Society for Stem Cell Research. Retrieved September 28, 2015. http://www.isscr.org/docs/default-source/2015-am-stockholm/draft-guidelines-for-stem-cell-science-and-clinical-translation-2015.pdf?sfvrsn=2

  66. Lo B, Parham L (2013) Ethical issues in stem cell research. Endocr Rev 30(3):204–213

    Article  Google Scholar 

  67. US Food and Drug Administration (2013) Code of federal regulations—title 21—food and drugs. Part 56: Institutional

    Google Scholar 

  68. Hyun I (2010) The bioethics of stem cell research and therapy. J Clin Invest 120(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang GTJ, Sonoyama W, Chen J, Park SH (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324(2):225–236

    Article  PubMed  Google Scholar 

  70. Karamzadeh R, Eslaminejad MB, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp 69, e4372

    Google Scholar 

  71. Busser H, De Bruyn C, Urbain F, Najar M, Pieters K, Raicevic G, Meuleman N, Bron D, Lagneaux L (2014) Isolation of adipose-derived stromal cells without enzymatic treatment: expansion, phenotypical, and functional characterization. Stem Cells Dev 23(19):2390–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, Suchanek J, Bouchal J, Vokurkova D, Ivancakova R (2010) Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol 2010:673513, Epub 2010 Oct 4

    Article  PubMed  PubMed Central  Google Scholar 

  73. Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert TE, Driemel O, Schmalz G (2010) Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 14(4):433–440

    Article  PubMed  Google Scholar 

  74. Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, Alliot-Licht B, Mallein-Gerin F, Perrier-Groult E, Farges JC (2015) Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations. Front Physiol 6:213

    Google Scholar 

  75. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci 99(22):14506–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, Ogiuchi H (2008) Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci 27(3):538–548

    Article  PubMed  Google Scholar 

  77. Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I (2007) Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 357(4):917–923

    Article  CAS  PubMed  Google Scholar 

  78. Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34(3):153–161

    Article  CAS  PubMed  Google Scholar 

  79. Parmar M, Sjöberg A, Björklund A, Kokaia Z (2003) Phenotypic and molecular identity of cells in the adult subventricular zone: in vivo and after expansion in vitro. Mol Cell Neurosci 24(3):741–752

    Article  CAS  PubMed  Google Scholar 

  80. Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Kokubu E, Wang X, Inoue T (2010) Formation of bone-like tissue by dental follicle cells co-cultured with dental papilla cells. Cell Tissue Res 342(2):221–231

    Article  PubMed  Google Scholar 

  81. Xiao L, Tsutsui T (2012) Three‐dimensional epithelial and mesenchymal cell co‐cultures form early tooth epithelium invagination‐like structures: expression patterns of relevant molecules. J Cell Biochem 113(6):1875–1885

    Google Scholar 

  82. Hirata TM, Ishkitiev N, Yaegaki K, Calenic B, Ishikawa H, Nakahara T, Haapasalo M (2010). Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media. J Endod 36(7):1139–1144

    Google Scholar 

  83. Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture: the serum-free media interactive online database. Altex 27(1):53

    PubMed  Google Scholar 

  84. Tarle SA, Shi S, Kaigler D (2011) Development of a serum‐free system to expand dental‐derived stem cells: PDLSCs and SHEDs. J Cell Physiol 226(1):66–73

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi T, Watanabe H, Yanagawa T, Tsutsumi S, Kayakabe M, Shinozaki T, Higuchi H, Takagishi K (2005) Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. J Bone Joint Surg 87(10):1426–1433

    Article  CAS  Google Scholar 

  86. Lin HT, Tarng YW, Chen YC, Kao CL, Hsu CJ, Shyr YM, Ku H-H, Chiou SH (2005) Using human plasma supplemented medium to cultivate human bone marrow–derived mesenchymal stem cell and evaluation of its multiple-lineage potential. Transplant Proc 37:4504–4505

    Article  PubMed  Google Scholar 

  87. Mizuno N, Shiba H, Ozeki Y, Mouri Y, Niitani M, Inui T, Inui T, Kurihara H (2006) Human autologous serum obtained using a completely closed bag system as a substitute for fetal calf serum in human mesenchymal stem cell cultures. Cell Biol Int 30(6):521–524

    Article  CAS  PubMed  Google Scholar 

  88. Shahdadfar A, Frønsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23(9):1357–1366

    Article  CAS  PubMed  Google Scholar 

  89. Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32(12):1212–1225

    Article  CAS  PubMed  Google Scholar 

  90. Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E, Locatelli F (2007) Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell‐therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211(1):121–130

    Google Scholar 

  91. Kilian O, Flesch I, Wenisch S, Taborski B, Jork A, Schnettler R, Jonuleit T (2004) Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9(7):337–344

    CAS  PubMed  Google Scholar 

  92. Suchanek J, Soukup T, Visek B, Ivancakova R, Kucerova L, Mokry J (2009) Dental pulp stem cells and their characterization. Biomed Papers 153(1):31–35

    Article  Google Scholar 

  93. Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Laine J (2007) N‐glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25(1):197–202

    Google Scholar 

  94. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–232

    Article  CAS  PubMed  Google Scholar 

  95. Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, Hsu S, Smith J, Prockop D (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Therapy 9(5):747–756

    Article  CAS  Google Scholar 

  96. Aguzzi A, Barbara J, Brown P, Budka H, Diringer H, Dormont D, Heymann DL (1997) Medicinal and other products and human and animal transmissible spongiform encephalopathies: memorandum from a WHO meeting

    Google Scholar 

  97. Halme DG, Kessler DA (2006) FDA regulation of stem-cell–based therapies. N Engl J Med 355(16):1730–1735

    Article  CAS  PubMed  Google Scholar 

  98. Bruinink A, Tobler U, Hälg M, Grünert J (2004) Effects of serum and serum heat-inactivation on human bone derived osteoblast progenitor cells. J Mater Sci Mater Med 15(4):497–501

    Article  CAS  PubMed  Google Scholar 

  99. Dictus C, Tronnier V, Unterberg A, Herold-Mende C (2007) Comparative analysis of in vitro conditions for rat adult neural progenitor cells. J Neurosci Methods 161(2):250–258

    Article  CAS  PubMed  Google Scholar 

  100. Dimarakis I, Levicar N (2006) Cell culture medium composition and translational adult bone marrow‐derived stem cell research. Stem Cells 24(5):1407–1408

    Article  PubMed  Google Scholar 

  101. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20(6):530–541

    Article  PubMed  Google Scholar 

  102. Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý J (2011) Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 193(6):344–365

    Article  PubMed  Google Scholar 

  103. Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomat 7:463–477

    Google Scholar 

  104. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu Y, Lai M, Chen CC (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22(7):1330–1337

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Suchánek Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suchánek, J., Browne, K.Z., Kleplová, T.S., Mazurová, Y. (2016). Protocols for Dental-Related Stem Cells Isolation, Amplification and Differentiation. In: Zavan, B., Bressan, E. (eds) Dental Stem Cells: Regenerative Potential. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-33299-4_2

Download citation

Publish with us

Policies and ethics