Skip to main content

Dental Stem Cells for Tooth Regeneration

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Teeth develop as result of sequential and reciprocal interactions between oral epithelium and cranial neural crest-derived cells. Signaling molecules and specific transcription factors constitute a unique molecular imprint for odontogenesis and contribute to the generation of teeth with various and function-specific shapes. Teeth are vulnerable to external harmful agents, injuries, and pathologies that compromise their integrity and function. Although stem cells guarantee dental tissue repair and regeneration after injury or pathology, the natural regenerative capacity of dental tissues is limited, thus making unable the entire restoration of damaged teeth. In such cases, cell-based therapeutic approaches that consist of in vitro manipulation of stem cells and their consequent administration to patients are attractive alternatives to current dental treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mitsiadis TA, Luder HU (2011) Genetic basis for tooth malformations: from mice to men and back again. Clin Genet 80(4):319–329

    Article  CAS  PubMed  Google Scholar 

  2. Cobourne MT, Mitsiadis T (2006) Neural crest cells and patterning of the mammalian dentition. J Exp Zool B Mol Dev Evol 306(3):251–260

    Article  PubMed  Google Scholar 

  3. Anderson DJ (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16:129–158

    Article  CAS  PubMed  Google Scholar 

  4. Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  5. Imai H, Osumi-Yamashita N, Ninomiya Y, Eto K (1996) Contribution of early-emigrating midbrain crest cells to the dental mesenchyme of mandibular molar teeth in rat embryos. Dev Biol 176(2):151–165

    Article  CAS  PubMed  Google Scholar 

  6. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679

    CAS  PubMed  Google Scholar 

  7. Diep L, Matalova E, Mitsiadis TA, Tucker AS (2009) Contribution of the tooth bud mesenchyme to alveolar bone. J Exp Zool B Mol Dev Evol 312B(5):510–517

    Article  PubMed  Google Scholar 

  8. Lumsden AG (1988) Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Dev Suppl 103:155–169

    Google Scholar 

  9. Mina M, Kollar EJ (1987) The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 32(2):123–127

    Article  CAS  PubMed  Google Scholar 

  10. Kollar EJ, Fisher C (1980) Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207(4434):993–995

    Article  CAS  PubMed  Google Scholar 

  11. Bluteau G, Luder HU, De Bari C, Mitsiadis TA (2008) Stem cells for tooth engineering. Eur Cell Mater 16:1–9

    CAS  PubMed  Google Scholar 

  12. Mitsiadis T, Papagerakis P (2013) Development and structure of teeth and periodontal tissues. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Wiley-Blackwell, New Jersey (United States), pp 904–913

    Google Scholar 

  13. Sire JY, Davit-Beal T, Delgado S, Gu X (2007) The origin and evolution of enamel mineralization genes. Cells Tissues Organs 186(1):25–48

    Article  PubMed  Google Scholar 

  14. Mitsiadis TA, Rahiotis C (2004) Parallels between tooth development and repair: conserved molecular mechanisms following carious and dental injury. J Dent Res 83(12):896–902

    Article  CAS  PubMed  Google Scholar 

  15. Dorsky RI, Moon RT, Raible DW (2000) Environmental signals and cell fate specification in premigratory neural crest. Bioessays 22(8):708–716

    Article  CAS  PubMed  Google Scholar 

  16. Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17(11):R425–R434

    Article  CAS  PubMed  Google Scholar 

  17. Mitsiadis TA, Graf D (2009) Cell fate determination during tooth development and regeneration. Birth Defects Res C Embryo Today 87(3):199–211

    Article  CAS  PubMed  Google Scholar 

  18. Mitsiadis TA, Mucchielli ML, Raffo S, Proust JP, Koopman P, Goridis C (1998) Expression of the transcription factors Otlx2, Barx1 and Sox9 during mouse odontogenesis. Eur J Oral Sci 106(Suppl 1):112–116

    Article  CAS  PubMed  Google Scholar 

  19. Mucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust JP, Goridis C (1997) Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol 189(2):275–284

    Article  CAS  PubMed  Google Scholar 

  20. Green J (2002) Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev Dyn 225(4):392–408

    Article  CAS  PubMed  Google Scholar 

  21. Mitsiadis TA, Smith MM (2006) How do genes make teeth to order through development? J Exp Zool B Mol Dev Evol 306(3):177–182

    Article  PubMed  Google Scholar 

  22. Mikkola ML (2008) TNF superfamily in skin appendage development. Cytokine Growth Factor Rev 19(3–4):219–230

    Article  CAS  PubMed  Google Scholar 

  23. Neubuser A, Peters H, Balling R, Martin GR (1997) Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 90(2):247–255

    Article  CAS  PubMed  Google Scholar 

  24. Jimenez-Rojo L, Granchi Z, Graf D, Mitsiadis TA (2012) Stem cell fate determination during development and regeneration of ectodermal organs. Front Physiol 3:107

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mitsiadis TA, Henrique D, Thesleff I, Lendahl U (1997) Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development 124(8):1473–1483

    CAS  PubMed  Google Scholar 

  26. Mitsiadis TA, Hirsinger E, Lendahl U, Goridis C (1998) Delta-notch signaling in odontogenesis: correlation with cytodifferentiation and evidence for feedback regulation. Dev Biol 204(2):420–431

    Article  CAS  PubMed  Google Scholar 

  27. Mitsiadis TA, Lardelli M, Lendahl U, Thesleff I (1995) Expression of Notch 1, 2 and 3 is regulated by epithelial-mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate. J Cell Biol 130(2):407–418

    Article  CAS  PubMed  Google Scholar 

  28. Mitsiadis TA, Regaudiat L, Gridley T (2005) Role of the Notch signalling pathway in tooth morphogenesis. Arch Oral Biol 50(2):137–140

    Article  CAS  PubMed  Google Scholar 

  29. Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G (2010) BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 137(18):3025–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caton J, Luder HU, Zoupa M, Bradman M, Bluteau G, Tucker AS, Klein O, Mitsiadis TA (2009) Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Dev Biol 328(2):493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27(3):286–291

    Article  CAS  PubMed  Google Scholar 

  32. Kettunen P, Laurikkala J, Itaranta P, Vainio S, Itoh N, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219(3):322–332

    Article  CAS  PubMed  Google Scholar 

  33. Mitsiadis TA, Tucker AS, De Bari C, Cobourne MT, Rice DP (2008) A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Dev Biol 320(1):39–48

    Article  CAS  PubMed  Google Scholar 

  34. Caton J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA (2011) Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med 15(5):1054–1065

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mitsiadis TA, De Bari C, About I (2008) Apoptosis in developmental and repair-related human tooth remodeling: a view from the inside. Exp Cell Res 314(4):869–877

    Article  CAS  PubMed  Google Scholar 

  36. Ferracane JL (2011) Resin composite: state of the art. Dent Mater 27(1):29–38

    Article  CAS  PubMed  Google Scholar 

  37. Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A (2011) State of the art etch-and-rinse adhesives. Dent Mater 27(1):1–16

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann N, Debret R, Romeas A, Magloire H, Degrange M, Bleicher F, Sommer P, Seux D (2009) Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J Dent Res 88(1):77–82

    Article  CAS  PubMed  Google Scholar 

  39. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano DE (2008) Dental adhesion review: aging and stability of the bonded interface. Dent Mater 24(1):90–101

    Article  CAS  PubMed  Google Scholar 

  40. Castellan CS, Bedran-Russo AK, Karol S, Pereira PN (2011) Long-term stability of dentin matrix following treatment with various natural collagen cross-linkers. J Mech Behav Biomed Mater 4(7):1343–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bedran-Russo AK, Castellan CS, Shinohara MS, Hassan L, Antunes A (2011) Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater 7(4):1735–1741

    Article  CAS  PubMed  Google Scholar 

  42. Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod 34(7 Suppl):S18–S24

    Article  PubMed  Google Scholar 

  43. Dammaschke T (2008) The history of direct pulp capping. J Hist Dent 56(1):9–23

    PubMed  Google Scholar 

  44. DeRosa TA (2006) A retrospective evaluation of pulpotomy as an alternative to extraction. Gen Dent 54(1):37–40

    PubMed  Google Scholar 

  45. Bishop BG, Woollard GW (2002) Modern endodontic therapy for an incompletely developed tooth. Gen Dent 50(3):252–256, quiz 257–258

    PubMed  Google Scholar 

  46. Nosrat A, Asgary S (2010) Apexogenesis treatment with a new endodontic cement: a case report. J Endod 36(5):912–914

    Article  PubMed  Google Scholar 

  47. Ricketts D (2001) Management of the deep carious lesion and the vital pulp dentine complex. Br Dent J 191(11):606–610

    CAS  PubMed  Google Scholar 

  48. Goto Y, Ceyhan J, Chu SJ (2009) Restorations of endodontically treated teeth: new concepts, materials, and aesthetics. Pract Proced Aesthet Dent 21(2):81–89

    PubMed  Google Scholar 

  49. Esposito M, Grusovin MG, Maghaireh H, Worthington HV (2013) Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev 3, CD003878

    PubMed  Google Scholar 

  50. Temmerman A, Keestra JA, Coucke W, Teughels W, Quirynen M (2015) The outcome of oral implants placed in bone with limited bucco-oral dimensions: a 3-year follow-up study. J Clin Periodontol 42(3):311–318

    Article  PubMed  Google Scholar 

  51. Esposito M, Murray-Curtis L, Grusovin MG, Coulthard P, Worthington HV (2007) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev 4, CD003815

    PubMed  Google Scholar 

  52. Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A (2011) Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale 3(2):335–353

    Article  CAS  PubMed  Google Scholar 

  53. Singh P (2011) Understanding peri-implantitis: a strategic review. J Oral Implantol 37(5):622–626

    Article  PubMed  Google Scholar 

  54. Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV (2015) Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 31(4):317–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lynch SE, Buser D, Hernandez RA, Weber HP, Stich H, Fox CH, Williams RC (1991) Effects of the platelet-derived growth factor/insulin-like growth factor-I combination on bone regeneration around titanium dental implants. Results of a pilot study in beagle dogs. J Periodontol 62(11):710–716

    Article  CAS  PubMed  Google Scholar 

  56. Becker W, Lynch SE, Lekholm U, Becker BE, Caffesse R, Donath K, Sanchez R (1992) A comparison of ePTFE membranes alone or in combination with platelet-derived growth factors and insulin-like growth factor-I or demineralized freeze-dried bone in promoting bone formation around immediate extraction socket implants. J Periodontol 63(11):929–940

    Article  CAS  PubMed  Google Scholar 

  57. Windisch P, Stavropoulos A, Molnar B, Szendroi-Kiss D, Szilagyi E, Rosta P, Horvath A, Capsius B, Wikesjo UM, Sculean A (2012) A phase IIa randomized controlled pilot study evaluating the safety and clinical outcomes following the use of rhGDF-5/beta-TCP in regenerative periodontal therapy. Clin Oral Investig 16(4):1181–1189

    Article  PubMed  Google Scholar 

  58. Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, Hamachi T, Maeda K, Yokota M, Kido J, Nagata T, Kurihara H, Takashiba S, Sibutani T, Fukuda M, Noguchi T, Yamazaki K, Yoshie H, Ioroi K, Arai T, Nakagawa T, Ito K, Oda S, Izumi Y, Ogata Y, Yamada S, Shimauchi H, Kunimatsu K, Kawanami M, Fujii T, Furuichi Y, Furuuchi T, Sasano T, Imai E, Omae M, Yamada S, Watanuki M, Murakami S (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90(1):35–40

    Article  CAS  PubMed  Google Scholar 

  59. Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, Giannobile WV, McCauley LK (2010) Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 363(25):2396–2405

    Article  CAS  PubMed  Google Scholar 

  60. Huang YC, Simmons C, Kaigler D, Rice KG, Mooney DJ (2005) Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther 12(5):418–426

    Article  CAS  PubMed  Google Scholar 

  61. Cirelli JA, Park CH, MacKool K, Taba M Jr, Lustig KH, Burstein H, Giannobile WV (2009) AAV2/1-TNFR:Fc gene delivery prevents periodontal disease progression. Gene Ther 16(3):426–436

    Article  CAS  PubMed  Google Scholar 

  62. Pelegrine AA, da Costa CE, Correa ME, Marques JF Jr (2010) Clinical and histomorphometric evaluation of extraction sockets treated with an autologous bone marrow graft. Clin Oral Implants Res 21(5):535–542

    Article  PubMed  Google Scholar 

  63. Gonshor A, McAllister BS, Wallace SS, Prasad H (2011) Histologic and histomorphometric evaluation of an allograft stem cell-based matrix sinus augmentation procedure. Int J Oral Maxillofac Implants 26(1):123–131

    PubMed  Google Scholar 

  64. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM (2011) Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res 22(3):251–258

    Article  CAS  PubMed  Google Scholar 

  65. Sauerbier S, Rickert D, Gutwald R, Nagursky H, Oshima T, Xavier SP, Christmann J, Kurz P, Menne D, Vissink A, Raghoebar G, Schmelzeisen R, Wagner W, Koch FP (2011) Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial--per-protocol analysis. Tissue Eng A 17(17-18):2187–2197

    Article  CAS  Google Scholar 

  66. Schmelzeisen R, Gutwald R, Oshima T, Nagursky H, Vogeler M, Sauerbier S (2011) Making bone II: maxillary sinus augmentation with mononuclear cells--case report with a new clinical method. Br J Oral Maxillofac Surg 49(6):480–482

    Article  PubMed  Google Scholar 

  67. Mitsiadis TA, Papagerakis P (2011) Regenerated teeth: the future of tooth replacement? Regen Med 6(2):135–139

    Article  PubMed  Google Scholar 

  68. Mitsiadis TA, Harada H (2015) Regenerated teeth: the future of tooth replacement. An update. Regen Med 10(1):5–8

    Article  CAS  PubMed  Google Scholar 

  69. Mitsiadis TA, Woloszyk A, Jimenez-Rojo L (2012) Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine (Lond) 7(11):1743–1753

    Article  CAS  Google Scholar 

  70. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  CAS  PubMed  Google Scholar 

  71. Mitsiadis TA, Feki A, Papaccio G, Caton J (2011) Dental pulp stem cells, niches, and notch signaling in tooth injury. Adv Dent Res 23(3):275–279

    Article  CAS  PubMed  Google Scholar 

  72. Pagella P, Jimenez-Rojo L, Mitsiadis TA (2014) Roles of innervation in developing and regenerating orofacial tissues. Cell Mol Life Sci 71(12):2241–2251

    Article  CAS  PubMed  Google Scholar 

  73. Pagella P, Neto E, Lamghari M, Mitsiadis TA (2015) Investigation of orofacial stem cell niches and their innervation through microfluidic devices. Eur Cell Mater 29:213–223

    CAS  PubMed  Google Scholar 

  74. Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14(16):R674–R685

    Article  CAS  PubMed  Google Scholar 

  75. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313(16):3377–3385

    Article  CAS  PubMed  Google Scholar 

  77. Mitsiadis TA, Fried K, Goridis C (1999) Reactivation of Delta-Notch signaling after injury: complementary expression patterns of ligand and receptor in dental pulp. Exp Cell Res 246(2):312–318

    Article  CAS  PubMed  Google Scholar 

  78. Mitsiadis TA, Romeas A, Lendahl U, Sharpe PT, Farges JC (2003) Notch2 protein distribution in human teeth under normal and pathological conditions. Exp Cell Res 282(2):101–109

    Article  CAS  PubMed  Google Scholar 

  79. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Article  PubMed  PubMed Central  Google Scholar 

  82. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    PubMed  Google Scholar 

  83. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I (1999) Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 147(1):105–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harada H, Toyono T, Toyoshima K, Yamasaki M, Itoh N, Kato S, Sekine K, Ohuchi H (2002) FGF10 maintains stem cell compartment in developing mouse incisors. Development 129(6):1533–1541

    CAS  PubMed  Google Scholar 

  85. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  86. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2(2):205–218

    Article  CAS  Google Scholar 

  87. Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, Harada H (2014) Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nanci A (2008) Ten cate’s oral histology: development, structure and function (Oral Anatomy), 7th edn. Mosby, St. Louis, p 411

    Google Scholar 

  89. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A 16(2):605–615

    Article  CAS  Google Scholar 

  90. Volponi AA, Pang Y, Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20(12):715–722

    Article  CAS  PubMed  Google Scholar 

  91. Hayashi Y, Murakami M, Kawamura R, Ishizaka R, Fukuta O, Nakashima M (2015) CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells. Stem Cell Res Ther 6:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng Y, Wang XY, Wang YM, Liu XY, Zhang CM, Hou BX, Wang SL (2012) Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res 91(7):676–682

    Article  CAS  PubMed  Google Scholar 

  93. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H, Nakashima M (2011) Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng A 17(15–16):1911–1920

    Article  CAS  Google Scholar 

  94. Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, Utunomiya S, Nakamura H, Matsushita K, Nakashima M (2013) A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2(7):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ikeda E, Tsuji T (2008) Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther 8(6):735–744

    Article  CAS  PubMed  Google Scholar 

  96. Oshima M, Tsuji T (2014) Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 102(2):123–136

    Article  CAS  PubMed  Google Scholar 

  97. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81(10):695–700

    Article  CAS  PubMed  Google Scholar 

  98. Iwatsuki S, Honda MJ, Harada H, Ueda M (2006) Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci 114(4):310–317

    Article  CAS  PubMed  Google Scholar 

  99. Sumita Y, Honda MJ, Ohara T, Tsuchiya S, Sagara H, Kagami H, Ueda M (2006) Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 27(17):3238–3248

    Article  CAS  PubMed  Google Scholar 

  100. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, Saito M, Otsu K, Harada H, Yamada Y, Fukumoto S (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287(13):10590–10601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoshida K, Sato J, Takai R, Uehara O, Kurashige Y, Nishimura M, Chiba I, Saitoh M, Abiko Y (2014) Differentiation of mouse iPS cells into ameloblast-like cells in cultures using medium conditioned by epithelial cell rests of Malassez and gelatin-coated dishes. Med Mol Morphol 48(3):138–145

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds of the University of Zurich (TAM and LJR) and the Polytechnic University of Marche (GO). The authors contributed to the planning, writing, critical reading, and editing of the present book chapter. The authors confirm that there are no conflicts of interest associated with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimios A. Mitsiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitsiadis, T.A., Orsini, G., Jimenez-Rojo, L. (2016). Dental Stem Cells for Tooth Regeneration. In: Zavan, B., Bressan, E. (eds) Dental Stem Cells: Regenerative Potential. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-33299-4_10

Download citation

Publish with us

Policies and ethics