Skip to main content

Healing Processes of the Tendon

  • Chapter
  • First Online:
Book cover The Lower Limb Tendinopathies

Part of the book series: Sports and Traumatology ((SPORTS))

  • 1434 Accesses

Abstract

The biological principles on which the healing process of the tendon is based are quite different from the biological principles that regulate the muscle healing process, although some aspects may be considered as similar. Especially the last stage, namely, the remodeling and maturation phases, is very different especially regarding the temporal length that in the tendon, in respect to the muscle, is much greater. However the healing process between the tendon and the muscle will not only differ in the length time. In effect, the extrinsic and intrinsic healing mechanisms are a peculiar feature of the tendon healing that have no similarity with what occurs in the muscle during its healing process. Therefore it is of fundamental importance, especially after tendon surgical treatment, to know the biological principles that guide the healing process of the tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tryptase is a proteolytic enzyme present in mast cell granules.

  2. 2.

    The myofibroblasts are connective tissue cells with contractile capabilities similar to the smooth muscle. Discovered in 1970, at these cells, an important role is recognized in the process of wound healing, tissue fibrosis, and pathological fascia contractures. Their evolution generally occurs from normal fibroblasts to proto-myofibroblasts, until the complete differentiation into myofibroblasts and to end to a terminal apoptosis that is influenced by mechanical tension, cytokines, and specific proteins from the extracellular matrix.

  3. 3.

    NO synthase is an enzyme distributed almost ubiquitously in tissues and in living organism in general that provides to produce NO starting from arginine that is converted to citrulline (intermediate metabolite of the urea cycle).

  4. 4.

    The protein scleraxis (Locus: Chr. 8 q24.3) is a member of the superfamily of transcription factors basic helix-loop-helix (bHLH). It is expressed in mature tendons and ligaments of the limbs and trunk but also in their progenitors. The gene coding for Scx is expressed in all the connective tissues that mediate the connection of the muscle to the bone structure, as well as in their progenitors that are found in primitive mesenchyme.

  5. 5.

    A dimer is a molecule formed by the union of two subunits (called monomers) of an identical chemical nature (homodimer) or of a chemical nature different (heterodimer).

  6. 6.

    An E-box is a DNA sequence that is typically located upstream of a gene in a “promoter region.”

  7. 7.

    In molecular biology and bioinformatics, a “consensus sequence” refers to the most common amino acid or nucleotide in a particular position after more aligned sequences.

  8. 8.

    Somite [from the Greek “soma,” body-ite], in embryology, is each of the segments in which it divides the dorsal mesoderm (or epimer), left and right of the spinal column. The somites give rise to elements that will form the dermis of the skin of the trunk (dermatomes), the muscles (myotomes), and the axial skeleton (sclerotomi).

  9. 9.

    The myogenic regulatory factors are transcription factors belonging to the family “basic helix-loop-helix” (bHLH), because they contain a basic domain involved in binding to the DNA and a domain HLH needed to form homodimers or heterodimers with other proteins containing HLH domains. The bHLH motif is found in many transcription factors that are ubiquitously expressed in a tissue-specific manner.

  10. 10.

    The MyoD gene encoding a transcription factor involved in the differentiation of the muscle, in particular, induces fibroblasts to differentiate into myoblasts.

References

  1. Leadbetter WB (1995) Anti-inflammatory therapy in sport injury: the role of nonsteroidal drugs and corticosteroid injection. Clin Sports Med 14:353–410

    CAS  PubMed  Google Scholar 

  2. Leadbetter WB (1995) Cell-matrix response in tendon injury. Clin Sports Med 14:353–410

    CAS  PubMed  Google Scholar 

  3. Bisciotti GN (2010) Le lesioni muscolari. Calzetti e Mariucci (eds). Perugia

    Google Scholar 

  4. Józsa LG, Kannus P (1997) Healing and regeneration of tendon. In: Human tendons: anatomy, physiology and pathology. Human Kinetics, Champaign, pp 526–554

    Google Scholar 

  5. Holch M, Biewener A, Thermann H, Zwipp H (1994) Non-operative treatment of acute Achilles tendon ruptures: a clinical concept and experimental results. Sport Exerc Injury 1:18–22

    Google Scholar 

  6. Maagaard-Mortensen NH, Skov O, Egund N (1994) Regeneration of Achilles tendon after necrosis. Acta Orthop Scand 258(Suppl):65–87

    Google Scholar 

  7. Minibattle ZH (1995) Treatment of Achilles tendon rupture. Non operative functional treatment. The second Congress of EFORT, Specialty day of EFFORT. Munich, July 4th 1995. Abstract book p 83

    Google Scholar 

  8. Houglum PA (1992) Soft tissue healing and its impact on rehabilitation. J Sport Rehab 1:19–39

    Article  Google Scholar 

  9. Józsa LG, Lehto M, Kannus P, Kvist M, Vieno T et al (1989) Fibronectin an laminin in Achilles tendon. Acta Orthop Scand 70:469–471

    Article  Google Scholar 

  10. Letho M, Józsa LG, Kvist M, Järvinen M, Bàlint BJ, Rèffy A (1990) Fibronectin in the ruptured human Achilles tendon and its paratenon. An immunoperoxidase study. Ann Chir Gynaecol 79:72–77

    Google Scholar 

  11. Enwemeka CS (1989) Inflammation, cellularity, and fibrillogenesis in regenerating tendon: implications for tendon rehabilitation. Phys Ther 69(10):816–825

    CAS  PubMed  Google Scholar 

  12. Garret WE, Lohnes J (1990) Cellular and matrix response to mechanical injury at the myotendinous junction. In: Leadbetter WB, Buckwalter JA, Gordon SL (eds) Sport induced inflammation. AAOS, Park Ridge, pp 215–224

    Google Scholar 

  13. Okuda Y, Gorski JP, An KN, Amadio PC (1987) Biomechanical, histological and biochemical analyses of canine tendon. J Orthop Res 5:60–68

    Article  CAS  PubMed  Google Scholar 

  14. Abrahamsson SO, Lundborg G, Lohmander LS (1989) Segmental variation in microstructure, matrix synthesis and cell proliferation in rabbit flexor tendon. Scand J Plast Reconstr Surg Hand Surg 23(3):191–198

    CAS  PubMed  Google Scholar 

  15. Abrahamsson SO, Lundborg G, Lohmander LS (1989) Tendon healing in vivo. An experimental model. Scand J Plast Reconstr Surg Hand Surg 23(3):199–205

    CAS  PubMed  Google Scholar 

  16. Dovi JV, He LK, Di Pietro LA (2003) Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 73(4):448–455

    Article  CAS  PubMed  Google Scholar 

  17. Godbout C, Bilodeau R, Van Rooijen N, Bouchard P, Frenette J (2010) Transient neutropenia increases macrophage accumulation and cell proliferation but does not improve repair following intratendinous rupture of Achilles tendon. J Orthop Res 28(8):1084–1091

    CAS  PubMed  Google Scholar 

  18. Mirza R, Di Pietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175(6):2454–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S (2010) Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 5(3):e9539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bréchot N, Gomez E, Bignon M, Khallou-Laschet J, Dussiot M, Cazes A, Alanio-Bréchot C, Durand M, Philippe J, Silvestre JS, Van Rooijen N, Corvol P, Nicoletti A, Chazaud B, Germain S (2008) Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS One 3(12):e3950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA (2008) The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am 90(3):565–579

    Article  PubMed  Google Scholar 

  22. Sercarz EE, Maverakis E (2004) Recognition and function in a degenerate immune system. Mol Immunol 40(14-15):1003–1008

    Article  CAS  PubMed  Google Scholar 

  23. Krysko DV, D’Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    Article  PubMed  Google Scholar 

  24. Poon IK, Hulett MD, Parish CR (2010) Molecular mechanism of late apoptotic/necrotic cell clearance. Cell Death Differ 28:340–345

    Google Scholar 

  25. Woodall J Jr, Tucci M, Mishra A, Asfour A, Benghuzzi H (2008) Cellular effects of platelet rich plasmainterleukin1 release from prp treated macrophages. Biomed Sci Instrum 44:489–494

    PubMed  Google Scholar 

  26. Andia I, Sanchez M, Maffulli N (2010) Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther 10:1–12

    Article  Google Scholar 

  27. Scott A, Lian Ø, Roberts CR, Cook JL, Handley CJ, Bahr R, Samiric T, Ilic MZ, Parkinson J, Hart DA, Duronio V, Khan KM (2008) Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee. Scand J Med Sci Sports 18(4):427–435

    Article  CAS  PubMed  Google Scholar 

  28. Scott A, Lian Ø, Bahr R, Hart DA, Duronio V, Khan KM (2008) Increased mast cell numbers in human patellar tendinosis: correlation with symptom duration and vascular hyperplasia. Br J Sports Med 42(9):753–757

    Article  CAS  PubMed  Google Scholar 

  29. Del Buono A, Battery L, Denaro V, Maccauro G, Maffulli N (2011) Tendinopathy and inflammation: some truths. Int J Immunopathol Pharmacol 24(1 Suppl 2):45–50

    PubMed  Google Scholar 

  30. Peacock EE, Van Winkle W (1970) Surgery and biology of wound repair. Saunders, Philadelphia, p 331424

    Google Scholar 

  31. Katenkamp D, Stiller D, Schulze E (1976) Ultrastructural cytology of regenerating tendon–an experimental study. Exp Pathol (Jena) 12(1):25–37

    CAS  Google Scholar 

  32. Gelberman RH, Vandeberg JS, Manske PR, Akeson WH (1985) The early stages of flexor tendon healing: a morphologic study of the first fourteen days. J Hand Surg Am 10(6 Pt 1):776–784

    Article  CAS  PubMed  Google Scholar 

  33. Gelberman RH, An KA, Banes A, Goldberg V (1988) Tendon. In: Woo S, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissue. AAOS, Ark Ridge, pp 1–40

    Google Scholar 

  34. Garner WL, McDonald JA, Koo M, Kuhn C 3rd, Weeks PM (1989) Identification of the collagen-producing cells in healing flexor tendons. Plast Reconstr Surg 83(5):875–879

    Article  CAS  PubMed  Google Scholar 

  35. Chang J, Most D, Thunder R, Mehrara B, Longaker MT, Lineaweaver WC (1998) Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Hand Surg Am 23:1052–1058

    Article  CAS  PubMed  Google Scholar 

  36. Wang JH (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582

    Article  PubMed  Google Scholar 

  37. Bisciotti GN, Capellu M, Hidalgo J et al (2007) Comparison of stiffness resulting from different surgical methods of repair of Achilles tendon rupture. Min Ort Traum 58(2):107–114

    Google Scholar 

  38. Everts V, Van der Zee E, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodeling. Histochem J 28:229–245

    Article  CAS  PubMed  Google Scholar 

  39. Ackermann PW, Ahmed M, Kreicbergs A (2002) Early nerve regeneration after Achilles tendon rupture – a prerequisite for healing? A study in the rat. J Orthop Res 20:849–856

    Article  PubMed  Google Scholar 

  40. Stayaert AE, Burssens PJ, Vercruysse CW et al (2006) The effects of substance P on the biomechanics properties of ruptured rat Achilles’ tendon. Arch Phys Med Rehabil 87:254–258

    Article  Google Scholar 

  41. Burssens P, Stayaert A, Forsyth R et al (2005) Exogenously administered substance P and neutral endopeptidase inhibitors stimulate fibroblast proliferation, angiogenesis, and collagen organization during Achilles tendon healing. Foot Ankle Int 26:832–839

    PubMed  Google Scholar 

  42. Carlsson O, Schizas N, Li J, Ackermann PW (2011) Substance P injections enhance tissue proliferation and regulate sensory nerve ingrowth in rat tendon repair. Scand J Med Sci Sports 21(4):562–569

    Article  CAS  PubMed  Google Scholar 

  43. Mammoto T, Seerattan RA, Paulson KD et al (2008) Nerve growth factor improves ligament healing. J Orthop Res 26:957–964

    Article  CAS  PubMed  Google Scholar 

  44. Ivie TJ, Bray RC, Salo PT (2002) Denervation impairs healing of the rabbit medial collateral ligament. J Orthop Res 20:990–995

    Article  CAS  PubMed  Google Scholar 

  45. Nelson L, Fairclough J, Archer CW (2010) Use of stem cells in the biological repair of articular cartilage. Expert Opin Biol Ther 10:43–55

    Article  CAS  PubMed  Google Scholar 

  46. Lui PP, Cheuk YC, Hung LK, Fu CF (2007) Increased apoptosis at the late stage of tendon healing. Wound Repair Regen 15:702–707

    Article  PubMed  Google Scholar 

  47. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  48. Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526–534

    Article  CAS  PubMed  Google Scholar 

  49. Barkhausen T, Van Griensven M, Zeichen J, Bosch U (2003) Modulation of cell function of human tendon fibroblast by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol 55:153–158

    Article  PubMed  Google Scholar 

  50. Stutek M, Van Griensven M, Zeichen J, Brauer N, Bosch U (2003) Cyclic mechanical stretching of human patellar tendon fibroblast: activation of JNK and modulation of apoptosis. Knee Surg Sports Traumatol Arthrosc 11:122–129

    Google Scholar 

  51. Scott A, Khan KM, Herr J, Cook JL, Lian O, Duronio V (2005) Hight strain mechanical loading rapidly induces tendon apoptosis: an ex vivo rat tibialis anterior model. Br J Sports Med 39:25

    Article  Google Scholar 

  52. Blumenthal NC, Ricci C, Breger L, Zychlinsky A, Solomon H et al (1997) Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Biolectromagnetics 18:264–272

    Article  CAS  Google Scholar 

  53. Yuan J, Murrel GA, Trickett A, Wang MX (2003) Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblast. Biochim Biophys Acta 1641:35–41

    Article  CAS  PubMed  Google Scholar 

  54. Sendzik J, Shakibaei M, Schafer-Korting M, Stahlmann R (2005) Fluoroquinolones cause changes in extracellular matrix, signaling proteins, metalloproteinases and caspase-3 in cultured human tendon cells. Toxicology 212:24–36

    Article  CAS  PubMed  Google Scholar 

  55. Hosaka Y, Teraoka H, Yamamoto E, Ueda H, Takehana K (2005) Mechanism of cell death in inflamed superficial digital flexor tendon in horse. J Comp Pathol 132:51–58

    Article  CAS  PubMed  Google Scholar 

  56. Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK (2004) Immunohistochemical characterization of cells in adult human patellar tendon. J Histochem Cytochem 52:1151–1157

    Article  CAS  PubMed  Google Scholar 

  57. Daugas E, Nochy D, Ravagnag L, Loeffer M et al (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  CAS  PubMed  Google Scholar 

  58. Desmouliere A (1995) Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int 19:471–476

    Article  CAS  PubMed  Google Scholar 

  59. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive disease. J Pathol 200(4):500–503

    Article  CAS  PubMed  Google Scholar 

  60. Kuroda R, Kurosaka M, Yoshiya S, Mizuno K (2000) Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs. Knee Surg Sports Traumatol Arthrosc 8:120–126

    Article  CAS  PubMed  Google Scholar 

  61. Visser LC, Arnoczky SP, Caballero O, Egerbacher M (2010) Platelet-rich fibrin constructs elute higher concentrations of transforming growth factor-β1 and increase tendon cell proliferation over time when compared to blood clots: a comparative in vitro analysis. Vet Surg 39(7):811–817

    Article  PubMed  Google Scholar 

  62. Duffy FJ Jr, Seiler JG, Gelberman RH, Hergrueter CA (1995) Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg Am 20:645–649

    Article  PubMed  Google Scholar 

  63. Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, Lineaweaver WC (1997) Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg 100:937–944

    Article  CAS  PubMed  Google Scholar 

  64. Oryan A, Moshiri A (2011) A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits. J Musculoskelet Neuronal Interact 11(2):185–189

    CAS  PubMed  Google Scholar 

  65. Bidder M, Towler DA, Gelberman RH, Boyer MI (2000) Expression of mRNA for vascular endothelial growth factor at the repair site of healing canine flexor tendon. J Orthop Res 18:247–252

    Article  CAS  PubMed  Google Scholar 

  66. Savitskaya YA, Izaguirre A, Sierra L, Perez F, Cruz F, Villalobos E, Almazan A, Ibarra C (2011) Effect of angiogenesis-related cytokines on rotator cuff disease: the search for sensitive biomarkers of early tendon degeneration. Clin Med Insights Arthritis Musculoskelet Disord 4:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang SC (1994) Cartilage-derived morphogenetic proteins. J Biol Chem 269:28227–28234

    CAS  PubMed  Google Scholar 

  68. Tsubone T, Moran SL, Amadio PC, Zhao C, An KN (2004) Expression of growth factors in canine flexor tendon after laceration in vivo. Ann Plast Surg 53(4):393–397

    Article  PubMed  Google Scholar 

  69. Chen CH, Cao Y, Wu YF, Bais AJ, Gao JS, Tang JB (2008) Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg Am 33(10):1834–1842

    Article  PubMed  Google Scholar 

  70. Potenza AD (1962) Tendon healing within the flexor digital sheath in the dog: an experimental study. J Bone Joint Surg Am 44:49–64

    PubMed  Google Scholar 

  71. Bergljung L (1968) Vascular reactions after tendon suture and tendon transplantation. A stereo-microangiographic study on the calcaneal tendon of the rabbit. Scand J Plast Reconstr Surg Suppl 4:7–63

    CAS  PubMed  Google Scholar 

  72. Takasugi H, Inoue H, Akahori O (1976) Scanning electron microscopy of repaired tendon and pseudosheat. Hand 8:228–234

    Article  CAS  PubMed  Google Scholar 

  73. Matthews P (1979) The pathology of flexor tendon repair. Hand 11:233–242

    Article  CAS  PubMed  Google Scholar 

  74. Mass DP, Tuel RJ (1991) Intrinsic healing of the laceration site in human superficialis flexor tendons in vitro. J Hand Surg Am 16(1):24–30

    Article  CAS  PubMed  Google Scholar 

  75. Williams IF, Heaton A, McCullagh KG (1980) Cell morphology and collagen types in equine tendon scar. Res Vet Sci 28(3):302–310

    CAS  PubMed  Google Scholar 

  76. Schneider LH (1987) Flexor tenolysis. In: Hunter JM, Schneider LH, Mackin EJ (eds) Tendon surgery in the hand. Mosby, St Louis, pp 209–215

    Google Scholar 

  77. Wheeldon T (1939) The use of cellophane as a permanent tendon sheat. J Bone Joint Surg 21:393–405

    Google Scholar 

  78. Lundborg G (1976) Experimental flexor tendon healing without adhesion formation – A new concept of tendon nutrition and intrinsic healing mechanism. Hand 8:235–238

    Article  CAS  PubMed  Google Scholar 

  79. Lundborg G, Hansson HA, Rank F, Rydevik B (1980) Superficial repair of severed flexor tendon in synovial environment. An experimental ultrastructural study on cellular mechanism. J Hand Surg Am 5:451–461

    Article  CAS  PubMed  Google Scholar 

  80. Manske PE, Gelberman RH, Vandeberg JS, Lesker AP (1984) Intrinsic flexor-tendon repair. A morphologic study in vivo. J Bone Joint Surg Am 66:385–396

    CAS  PubMed  Google Scholar 

  81. Lindsay WK, Thomson HG (1960) Digital flexor tendons: an experimental study. Part I. The significance of each component of the flexor mechanism in tendon healing. Br J Plast Surg 12:289–316

    Article  CAS  PubMed  Google Scholar 

  82. Gelberman RH, Vandeberg JS, Manske PR, Akesn WH (1983) Flexor tendon healing and restoration of the gliding surface. An ultrastructural study in dogs. J Bone Joint Surg Am 65:70–80

    CAS  PubMed  Google Scholar 

  83. Lundborg G, Rank F (1987) Tendon healing: intrinsic mechanism. In: Hunter JM, Schneider LH, Mackin EJ (eds) Tendon surgery in the hand. Mosby, St. Louis, pp 54–60

    Google Scholar 

  84. Fenwick SA, Hazleman BL, Riley GP (2002) The vasculature and its role in the damaged and healing tendon. Arthritis Res 4(4):252–260

    Article  PubMed  PubMed Central  Google Scholar 

  85. Aspenberg P (2007) Stimulation of tendon repair: mechanical loading, GDFs and platelets. A minireview. Int Orthop 31:783–789

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485

    Article  CAS  PubMed  Google Scholar 

  87. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF-b superfamily. Nature 368:639–642

    Article  CAS  PubMed  Google Scholar 

  88. Storm E, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979

    CAS  PubMed  Google Scholar 

  89. Mikic B (2004) Multiple effects of GDF-5 deficiency on skeletal tissues: implications for therapeutic bioengineering. Ann Biomed Eng 32:466–476

    Article  PubMed  Google Scholar 

  90. Harada M et al (2007) Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthritis Cartilage 15:468–474

    Article  CAS  PubMed  Google Scholar 

  91. Wolfman NM et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGFbeta gene family. J Clin Invest 100:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dines JS et al (2007) The effect of growth differentiation factor-5-coated sutures on tendon repair in a rat model. J Shoulder Elbow Surg 16:S204–S207

    Article  PubMed  Google Scholar 

  93. Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70:51–54

    Article  CAS  PubMed  Google Scholar 

  94. Rickert M et al (2005) Adenovirus-mediated gene transfer of growth and differentiation factor-5 into tenocytes and the healing rat Achilles tendon. Connect Tissue Res 46:175–183

    Article  CAS  PubMed  Google Scholar 

  95. Hotten GC et al (1996) Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors 13:65–74

    Article  CAS  PubMed  Google Scholar 

  96. Kakudo N, Wang YB, Miyake S, Kushida S, Kusumoto K (2007) Analysis of osteochondroinduction using growth and differentiation factor-5 in rat muscle. Life Sci 81:137–143

    Article  CAS  PubMed  Google Scholar 

  97. Kadesch T (1993) Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ 4:49–55

    CAS  PubMed  Google Scholar 

  98. Murre C et al (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544

    Article  CAS  PubMed  Google Scholar 

  99. Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113:235–248

    Article  CAS  PubMed  Google Scholar 

  100. Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121:1099–1110

    CAS  PubMed  Google Scholar 

  101. Léjard V (2007) Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem 282:17665–17675

    Article  PubMed  CAS  Google Scholar 

  102. Murchison N et al (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134:2697–2708

    Article  CAS  PubMed  Google Scholar 

  103. Aslan H, Kimelman-Bleich N, Pelled G, Gazit D (2008) Molecular targets for tendon neoformation. J Clin Invest 118(2):439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Volpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisciotti, G.N., Volpi, P. (2016). Healing Processes of the Tendon. In: Bisciotti, G., Volpi, P. (eds) The Lower Limb Tendinopathies. Sports and Traumatology. Springer, Cham. https://doi.org/10.1007/978-3-319-33234-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33234-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33232-1

  • Online ISBN: 978-3-319-33234-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics