Skip to main content

Intelligent Vision Processing Technology for Advanced Driver Assistance Systems

  • Chapter
  • First Online:
  • 3153 Accesses

Abstract

Intelligent vision processing technology has a wide range of applications on vehicles. Many of these applications are related to a so-called Advanced Driver Assistance System (ADAS). Collaborated with cameras, Pedestrian and Motorcyclist Detection System (PMD), Lane Departure Warning System (LDWS), Forward Collision Warning System (FCWS), Speed Limit Detection System (SLDS), and Dynamic Local Contrast Enhancement (DLCE) techniques can help drivers notice important events or objects around. This chapter gives an in-depth exploration for these intelligent vision processing technologies from the viewpoints of methodology development, algorithm optimization, and system implementation on embedded platforms. More precisely, this chapter tends to first give a survey and overview for newly appeared state-of-the-art intelligent vision processing technologies for ADAS, and then highlights some significant technologies including PMD, LDWS, FCWS, SLDS, and DLCE developed in System on Chip (SoC) Laboratory, Fong-Chia University, Taiwan, and intelligent Vision System (iVS) Laboratory, National Chiao Tung University, Taiwan. Besides, implementation and verification of the above ADAS technologies will also be presented. In summary, the proposed PMD design achieves 32.5 frame per second (fps) for 720 × 480 (D1) resolution on an AMD A10-7850K processor by using heterogeneous computing. On an automotive-grade Freescale i.MX6 (including 4-core ARM Cortex A9, 1 GB DDR3 RAM, and Linux environment) platform, the proposed LDWS, FCWS, and SLDS designs, respectively, achieve 33 fps, 32 fps, and 30 fps for D1 resolution. Finally, the proposed DLCE system is realized on a TREK-668 platform with an Intel Atom 1.6 GHz processor for real-time requirement of 50 fps at D1 resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Pedestrian, Motorcyclist, and Vehicle Detection System (PMD)

  1. Dollar P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell 36(8):1532–1545

    Article  Google Scholar 

  2. Ni B, Yan S, Wang M, Kassim AA, Qi T (2013) High-order local spatial context modeling by spatialized random forest. IEEE Trans Image Process 22(2):739–751

    Article  MathSciNet  Google Scholar 

  3. Pedersoli M, Gonzalez J, Hu X, Roca X (2014) Toward real-time pedestrian detection based on a deformable template model. IEEE Trans Intell Transp Syst 15(1):355–364

    Article  Google Scholar 

  4. Bing S, Su S, Li S, Yun C, Ji R (2013) Decomposed human localization in personal photo albums. Proc. visual communications and image processing (VCIP), p 1–6

    Google Scholar 

  5. Tosato D, Spera M, Cristani M, Murino V (2013) Characterizing humans on Riemannian manifolds. IEEE Trans Pattern Anal Mach Intell 35(8):1972–1984

    Article  Google Scholar 

  6. Yang Y, Ramanan D (2013) Articulated human detection with flexible mixtures of parts. IEEE Trans Pattern Anal Mach Intell 35(12):2878–2890

    Article  Google Scholar 

  7. Choi J, Jung C, Lee J, Kim C (2014) Determining the existence of objects in an image and its application to image thumbnailing. IEEE Trans Signal Process Lett 21(8):957–961

    Article  Google Scholar 

  8. Ablavsky V, Sclaroff S (2011) Layered graphical models for tracking partially occluded objects. IEEE Trans Pattern Anal Mach Intell 33(9):1758–1775

    Article  Google Scholar 

  9. Lillywhite K, Lee D-J, Tippetts B (2012) Improving evolution-constructed features using speciation for general object detection. Proc. IEEE workshop applications of computer vision (WACV), p 441–446.

    Google Scholar 

  10. Satpathy A, Jiang X, Eng H-L (2014) Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans Image Process 23(1):287–297

    Article  MathSciNet  Google Scholar 

  11. Farhadi M, Motamedi SA, Sharifian S (2011) Efficient human detection based on parallel implementation of gradient and texture feature extraction methods. Proc. machine vision and image processing (MVIP), p 1–5

    Google Scholar 

  12. Enzweiler M, Gavrila DM (2011) A multilevel mixture-of-experts framework for pedestrian classification. IEEE Trans Image Process 20(10):2967–2979

    Article  MathSciNet  Google Scholar 

  13. Wang X, Wang M, Li W (2014) Scene-specific pedestrian detection for static video surveillance. IEEE Trans Pattern Anal Mach Intell 36(2):361–374

    Article  Google Scholar 

  14. Prest A, Schmid C, Ferrari V (2012) Weakly supervised learning of interactions between humans and objects. IEEE Trans Pattern Anal Mach Intell 34(3):601–614

    Article  Google Scholar 

  15. Yao BZ, Nie BX, Liu Z, Zhu S-C (2014) Animated pose templates for modeling and detecting human actions. IEEE Trans Pattern Anal Mach Intell 36(3):436–452

    Article  Google Scholar 

  16. Wu J, Hu D (2014) Learning effective event models to recognize a large number of human actions. IEEE Trans Multimedia 16(1):147–158

    Article  Google Scholar 

  17. Yao B, Li F-F (2012) Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses. IEEE Trans Pattern Anal Mach Intell 34(9):1691–1703

    Article  MathSciNet  Google Scholar 

  18. Farhadi A, Sadeghi MA (2013) Phrasal recognition. IEEE Trans Pattern Anal Mach Intell 35(12):2854–2865

    Article  Google Scholar 

  19. Rakate GR, Borhade SR, Jadhav PS, Shah MS (2012) Advanced pedestrian detection system using combination of Haar-like features, Adaboost algorithm and Edgelet-Shapelet. IEEE International Computational Intelligence and Computing Research Conf. (ICCIC), Coimbatore, Dec 2012, p 1–5

    Google Scholar 

  20. Gressmann M, Palm G, Lohlein O (2011) Surround view pedestrian detection using heterogeneous classifier cascades. IEEE International Intelligent Transportation Systems Conf. (ITSC), Washington, DC, Oct 2011, p 1317–1324

    Google Scholar 

  21. Prioletti A, Mogelmose A, Grisleri P, Trivedi MM, Broggi A, Moeslund TB (2013) Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation. IEEE Int Intell Transp Syst 14(3):1346–1359

    Article  Google Scholar 

  22. Li Y, Li B, Bin T, Yao Q (2013) Vehicle detection based on the and- or graph for congested traffic conditions. IEEE Trans Intell Transp Syst 14(2):984–993

    Article  Google Scholar 

  23. Lv Y, Yao B, Wang Y, Zhu S-C (2012) Reconfigurable templates for robust vehicle detection and classification. Proc. IEEE workshop applications of computer vision (WACV), p 321–328

    Google Scholar 

  24. Enzweiler M, Hummel M, Pfeiffer D, Franke U (2012) Efficient Stixel-based object recognition. Proc. IEEE conf. intelligent vehicles symposium (IV), p 1066–1071

    Google Scholar 

  25. Niknejad HT, Takeuchi A, Mita S, McAllester D (2012) On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation. IEEE Trans Intell Transp Syst 13(2):748–758

    Article  Google Scholar 

  26. Feris R, Datta A, Pankanti S, Sun M-T (2013) Boosting object detection performance in crowded surveillance videos. Proc. IEEE workshop applications of computer vision (WACV), p 427–432

    Google Scholar 

  27. Sivaraman S, Trivedi MM (2013) A review of recent developments in vision-based vehicle detection. Proc. IEEE conf. intelligent vehicles symposium (IV), p 310–315

    Google Scholar 

  28. Chunpeng W, Lijuan D, Jun M, Faming F, Xuebin W (2009) Detection of front-view vehicle with occlusions using AdaBoost. IEEE International Engineering and Computer Science, ICIECS 2009, Wuhan, 19–20 Dec 2009, p 1–4

    Google Scholar 

  29. Bobo D, Wei L, Pengyu F, Chunyang Y, Xuezhi W, Huai Y (2009) Real-time on-road vehicle and motorcycle detection using a single camera. IEEE international industrial technology, Gippsland, Feb 2009, VIC, p 1–6

    Google Scholar 

  30. Chen K-H, Ju T-F, Lu W-M, Guo J-I (2014) Vision-based multiple moving objects detection for intelligent automobiles. Int J Electr Eng 21(6):201–213

    Google Scholar 

  31. Choi MJ, Torralba A, Willsky AS (2012) A tree-based context model for object recognition. IEEE Trans Pattern Anal Mach Intell 34(2):240–252

    Article  Google Scholar 

Lane Departure Warning System

  1. Lindner P, Blokzyl S, Wanielik G, Scheunert U (2010) Applying multi-level processing for robust geometric lane feature extraction. Proc. 2010 I.E. conference on multisensor fusion and integration for intelligent systems (MFI), Sept 2010, p 248–254

    Google Scholar 

  2. Lin Q, Han Y, Hahn H (2010) Real-time lane detection based on extended edge-linking algorithm. Proc. 2010 2nd international conference on computer research and development, May 2010, p 725–730

    Google Scholar 

  3. Chang CY, Lin CH (2012) An efficient method for lane-mark extraction in complex condition. Proc. international conference on intelligence and computing and international conference on autonomic and trusted computing, Sept 2012, p 330–336

    Google Scholar 

  4. Yoo H, Yang U, Sohn K (2013) Gradient-enhancing conversion for illumination-robust lane detection. IEEE Trans Intell Transp Syst 14(3):1083–1094

    Article  Google Scholar 

  5. Ge PS, Guo L, Xu GK, Zhang RH, Zhang T (2012) A real-time lane detection algorithm based on intelligent CCD parameters regulation. Publishing in Discrete Dynamics in Nature and Society, Discret Dyn Nat Soc p 1–16

    Google Scholar 

  6. Huo CL, Yu YH, Sun TY (2012) Lane departure warning system based on dynamic vanishing point adjustment. Proc. of 2012 I.E. 1st conference on consumer electronics, p 25–28

    Google Scholar 

Forward Collision Warning System

  1. Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: a review. IEEE Trans Pattern Anal Mach Intell 28(5):694–711

    Article  Google Scholar 

  2. Kumar U (2013) Vehicle detection in monocular night-time gray-level videos. Proc. 28th international conference in image and vision computing, New Zealand, Nov 2013, p 214–219

    Google Scholar 

  3. Teoh S, Brunl T (2012) Symmetry-based monocular vehicle detection system. Mach Vis Appl 23:831–842

    Article  Google Scholar 

  4. Fossati A, Schönmann P, Fua P (2011) Real-time vehicle tracking for driving assistance. Mach Vis Appl 22(2):439–448

    Article  Google Scholar 

  5. Khairdoost N, Monadjemi SA, Jamshidi K (2013) Front and rear vehicle detection using hypothesis generation and verification. Signal Image Process 4(4):31–50

    Google Scholar 

  6. Park K-Y, Hwang S-Y (2014) Robust range estimation with a monocular camera for vision-based forward collision warning system. Sci World J 2014:1–9

    Google Scholar 

Speed Limit Detection System

  1. Barnes N, Loy G (2006) Real-time regular polygonal sign detection. Springer Tracts Adv Robot 25:55–66

    Article  Google Scholar 

  2. Loy G, Bames N (2004) Fast shape-based road sign detection for a driver assistance system. Proc. IEEE/RSL international conference on intelligent robots and systems, 28 Sept–2 Oct 2004

    Google Scholar 

  3. Keller CG, Sprunk C, Bahlmann C, Giebel J, Baratoff G (2008) Real-time recognition of U.S. speed signs. Proc. 2008 I.E. intelligent vehicles symposium, The Netherlands, 4–6 June 2008

    Google Scholar 

  4. Abukhait J, Zyout I, Mansour AM (2013) Speed sign recognition using shape-based features. Int J Comput Appl 84(15):32–37

    Google Scholar 

  5. Liu W, Lv J, Gao H, Duan B, Yuan H, Zhao H (2011) An efficient real-time speed limit signs recognition based on rotation invariant feature. Proc. 2011 I.E. intelligent vehicles symposium (IV), Baden-Baden, 5–9 June 2011

    Google Scholar 

  6. Lin H-H (1998) Recognition of printed digits of low resolution. Thesis, Institute of Computer and Information Science, National Chiao Tung University

    Google Scholar 

  7. Sharma R, Jain A, Sharma R, Wadhwa J (2013) Character and digit recognition aided by mathematical morphology. Int J Comput Technol Appl 4(5):828–832

    Google Scholar 

  8. Moutarde F, Bargeton A, Herbin A, Chanussot L (2007) Robust on-vehicle real-time visual detection of American and European speed limit signs, with a modular traffic signs recognition system. Proc. 2007 I.E. intelligent vehicles symposium, Istanbul, 13–15 June 2007

    Google Scholar 

  9. Glavtchev V, Muyan-Ȍzçelik P, Ota JM, Owens JD (2011) Feature-based speed limit sign detection using a graphics processing unit. Proc. 2011 I.E. intelligent vehicles symposium (IV), Baden-Baden, 5–9 June 2011

    Google Scholar 

  10. Torresen J, Bakke JW, Sekanina L (2004) Efficient recognition of speed limit signs. Proc. 2004 I.E. intelligent transportation systems conference, Washington, DC, 3–6 Oct 2004

    Google Scholar 

  11. Chen L, Li Q, Li M, Mao Q (2011) Traffic sign detection and recognition for intelligent vehicle. Proc. 2011 I.E. intelligent vehicles symposium (IV), Baden-Baden, Germany, 5–9 June 2011

    Google Scholar 

  12. Zaklouta F, Stanciulescu B (2014) Real-time traffic sign recognition in three stages. Robot Auton Syst 62(1):16–24

    Google Scholar 

Inclement Weather Processing Technology (DLCE)

  1. Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. Proc IEEE Conf Comput Vis Pattern Recognit 1:325–332

    Google Scholar 

  2. Shwartz S, Namer E, Schechner Y (2006) Blind haze separation. Proc IEEE Conf Comput Vis Pattern Recognit 2:1984–1991

    Google Scholar 

  3. Tan RT (2008) Visibility in bad weather from a single image. Proc. IEEE conf. on computer vision and pattern recognition, CVPR 2008, June 2008, p 1–8

    Google Scholar 

  4. Fattal R, 2008 (2008) Single image dehazing. ACM Trans Graph 27(3):1–9

    Article  Google Scholar 

  5. He K, Sun J, Tang X (2009) Single image haze removal using dark channel prior. Proc. IEEE conf. on computer vision and pattern recognition, CVPR 2009, June 2009, p 1956–1963

    Google Scholar 

  6. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  7. Park G-H, Cho H-H, Choi M-R (2008) A contrast enhancement method using dynamic range separate histogram equalization. IEEE Trans Consum Electron 54(4):1981–1987

    Article  Google Scholar 

  8. Zhiming W, Jianhua T (2006) A fast implementation of adaptive histogram equalization. 2006 8th international conference on signal processing, vol. 2

    Google Scholar 

  9. Pizer SM, Amburn EP, John DA, Robert C, Ari G, Trey G, Bart Ter Haar R, John BZ (1987) Adaptive histogram equalization and its variations. Proc Comput Vis Graph Image Process 39(3):355–368

    Article  Google Scholar 

  10. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Publishing in Graphics gems. In: Graphics gems IV. p 474–485

    Google Scholar 

  11. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25:713–724

    Article  Google Scholar 

  12. Xu H, Guo J, Liu Q, Ye L (2012) Fast image dehazing using improved dark channel prior. Proc. IEEE conf. on information science and technology, ICIST, March 2012, p 663–667

    Google Scholar 

  13. Lv X, Chen W, Shen I (2010) Real-time dehazing for image and video. Proc. Pacific conf. on computer graphics and applications, PG, Sept 2010, p 62–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Hung Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shen, PC. et al. (2017). Intelligent Vision Processing Technology for Advanced Driver Assistance Systems. In: Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-33201-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33201-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33200-0

  • Online ISBN: 978-3-319-33201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics