Skip to main content

Circuit Design in mm-Scale Sensor Platform for Future IoT Applications

  • Chapter
  • First Online:

Abstract

Since the emergence of the first computers in the 1940s, many different classes of computing systems, such as workstations, desktop PCs, and laptops, have been introduced to meet the ever-changing market needs, as predicted by “Bell’s Law.” Light-weight mobile computing devices were introduced in the early 2000s, and we expect to be surrounded by millions or trillions of small sensing/computing systems in the upcoming internet of things (IoT) era.

Sensor systems in the IoT era are expected to be several orders of magnitude smaller in volume than their predecessors, consistent with the general trend of increasing compactness observed as computing systems evolve. This means that computing systems with a volume on the order of cubic centimeters or even cubic millimeters are likely. Recent research shows that mm-scale systems can be realized with advances in low-power electronics design, packaging, and battery technologies. These miniature systems are expected to be the driving force for unprecedented IoT applications, such as implanted diagnosis sensors and pervasive environment monitoring sensors.

The key challenge for achieving mm-scale volume is to significantly reduce the power used by every component of a system due to the extremely limited amount of energy storage. Therefore, in this chapter, state-of-the-art low-power design strategies for a few core components which enable such mm-scale systems are reviewed. System-level design approach is also presented with a few recently demonstrated mm-scale sensing systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bell G, Chen R, Rege S (1972) The effect of technology on near term computer structures. Computer 5(2):29–38. doi:10.1109/C-M.1972.216890

    Article  Google Scholar 

  2. Bell G (2008) Bell’s law for the birth and death of computer classes. Commun ACM 51(1):86–94. doi:10.1145/1327452.1327453

    Article  Google Scholar 

  3. Oh S, Lee Y, Wang J, Foo Z, Kim Y, Jung Y, Blaauw D, Sylvester D (2015) A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system. IEEE J Solid State Circuits 50(7):1581–1591. doi:10.1109/JSSC.2015.2435736

    Article  Google Scholar 

  4. Jeong S, Foo Z, Lee Y, Sim JY, Blaauw D, Sylvester D (2014) A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J Solid State Circuits 49(8):1581–1591. doi:10.1109/JSSC.2014.2325574

    Article  Google Scholar 

  5. Kim G, Lee Y, Foo Z, Pannuto P, Kuo YS, Kempke B, Ghaed M, Bang S, Lee I, Kim Y, Jeong S, Dutta P, Sylvester D, Blaauw D (2014) A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting. In: Symposium on VLSI circuits. doi:10.1109/VLSIC.2014.6858425

  6. Chen YP, Jeon D, Lee Y, Kim Y, Foo Z, Lee I, Langhals NB, Kruger G, Oral H, Berenfeld O, Zhang Z, Blaauw D, Sylvester D (2015) An injectable 64 nW ECG mixed-signal SoC in 65 nm for arrhythmia monitoring. IEEE J Solid State Circuits 50(1):375–390. doi:10.1109/JSSC.2014.2364036

    Article  Google Scholar 

  7. Jung W, Jeong S, Oh S, Bang S, Sylvester D, Blaauw D (2015) A 0.7pF-to-10nF fully digital capacitance-to-digital converter using iterative delay-chain discharge. In: 2015 I.E. international solid-state circuits conference—(ISSCC) digest of technical papers. doi:10.1109/ISSCC.2015.7063137

  8. Choi M, Gu J, Blaauw D, Sylvester D (2015) Wide input range 1.7 μW 1.2 kS/s resistive sensor interface circuit with 1 cycle/sample logarithmic sub-ranging. In: Symposium on VLSI circuits. doi:10.1109/VLSIC.2015.7231311

  9. Souri K, Chae Y, Makinwa KAA (2013) A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55°C to 125°C. IEEE J Solid State Circuits 48(1):292–301. doi:10.1109/JSSC.2012.2214831

    Article  Google Scholar 

  10. Seok M, Kim G, Blaauw D, Sylvester D (2012) A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE J Solid State Circuits 47(10):2534–2545. doi:10.1109/JSSC.2012.2206683

    Article  Google Scholar 

  11. Myers J, Savanth A, Gaddh R, Howard D, Prabhat P, Flynn D (2016) A subthreshold ARM cortex-M0+ subsystem in 65 nm CMOS for WSN applications with 14 power domains, 10T SRAM, and integrated voltage regulator. IEEE J Solid State Circuits 51(1):31–44. doi:10.1109/JSSC.2015.2477046

    Article  Google Scholar 

  12. Lim W, Lee I, Sylvester D, Blaauw D (2015) Batteryless sub-nW cortex-M0+ processor with dynamic leakage-suppression logic. In: IEEE international solid-state circuits conference. doi:10.1109/ISSCC.2015.706296

  13. Jung W, Oh S, Bang S, Lee Y, Foo Z, Kim G, Zhang Y, Sylvester D, Blaauw D (2014) An ultra-low power fully integrated energy harvester based on self-oscillating switched-capacitor voltage doubler. IEEE J Solid State Circuits 49(12):2800–2811. doi:10.1109/JSSC.2014.2346788

    Article  Google Scholar 

  14. Lee I, Lim W, Teran A, Phillips J, Sylvester D, Blaauw D (2016) A >78%-efficient light harvester over 100-to-100 klux with reconfigurable PV-cell network and MPPT circuit. In: IEEE international solid-state circuits conference, San Francisco, CA. 370–371. doi:10.1109/ISSCC.2016.7418061

  15. Bang S, Wang A, Giridhar B, Blaauw D, Sylvester D (2013) A fully integrated successive-approximation switched-capacitor DC-DC converter with 31 mV output voltage resolution. In: IEEE international solid-state circuits conference. doi:10.1109/ISSCC.2013.6487774

  16. Ng V, Sanders S (2012) A 92%-efficiency wide-input-voltage-range switched-capacitor DC-DC converter. In: IEEE international solid-state circuits conference. doi:10.1109/ISSCC.2012.6177016

  17. Ramadass YK, Fayed AA, Chandrakasan AP (2010) A fully-integrated switched-capacitor step-down DC-DC converter with digital capacitance modulation in 45 nm CMOS. IEEE J Solid State Circuits 45(12):2557–2565. doi:10.1109/JSSC.2010.2076550

    Article  Google Scholar 

  18. Ramadass YK, Chandrakasan AP (2007) Voltage scalable switched capacitor DC-DC converter for ultra-low-power on-chip applications. In: IEEE power electronics specialists conference. doi:10.1109/PESC.2007.4342378

  19. Seeman MD, Sanders SR (2008) Analysis and optimization of switched-capacitor DC–DC converters. IEEE Trans Power Electron 23(2):841–851. doi:10.1109/TPEL.2007.915182

    Article  Google Scholar 

  20. Molnar A, Lu B, Lanzisera S, Cook BW, Pister KSJ (2004) An ultra-low power 900 MHz RF transceiver for wireless sensor networks. In: IEEE custom integrated circuits conference. doi:10.1109/CICC.2004.1358833

  21. Cook BW, Berny A, Molnar A, Lanzisera S, Pister KSJ (2006) Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J Solid State Circuits 41(12):2757–2766. doi:10.1109/JSSC.2006.884801

    Article  Google Scholar 

  22. Yoon DY, Jeong CJ, Cartwright J, Kang HY, Han SK, Kim NS, Ha DS, Lee SG (2012) A new approach to low-power and low-latency wake-up receiver system for wireless sensor nodes. IEEE J Solid State Circuits 47(10):205–2419. doi:10.1109/JSSC.2012.2209778

    Article  Google Scholar 

  23. Yadav K, Kymissis I, Kinget PR (2013) A 4.4-μW wake-up receiver using ultrasound data. IEEE J Solid State Circuits 48(3):649–660. doi:10.1109/JSSC.2012.2235671

    Article  Google Scholar 

  24. Kim G, Lee Y, Bang S, Lee I, Kim Y, Sylvester D, Blaauw D (2012) A 695 pW standby power optical wake-up receiver for wireless sensor nodes. In: IEEE custom integrated circuits conference. doi:10.1109/CICC.2012.6330603

  25. Shi Y, Choi M, Li Z, Kim G, Foo ZY, Kim HS, Wentzloff D, Blaauw D (2016) A 10 mm3 syringe-implantable near-field radio system on glass substrate. In: IEEE international solid-state circuits conference, Feb 2016

    Google Scholar 

  26. Yakovlev A, Jang J, Pivonka D, Poon A (2013) A 11 μW sub-pJ/bit reconfigurable transceiver for mm-sized wireless implants. In: IEEE custom integrated circuits conference. doi:10.1109/CICC.2013.6658501

  27. Allan DW (1966) Statistics of atomic frequency standards. Proc IEEE 54(2):221–230. doi:10.1109/PROC.1966.4634

    Article  Google Scholar 

  28. Yoon D, Sylvester D, Blaauw D (2012) A 5.58 nW 32.768 kHz DLL-assisted XO for real-time clocks in wireless sensing applications. In: IEEE international solid-state circuits conference. doi:10.1109/ISSCC.2012.6177043

  29. Hsiao KJ (2014) A 1.89 nW/0.15 V self-charged XO for real-time clock generation. In: IEEE international solid-state circuits conference. doi:10.1109/ISSCC.2014.6757442

  30. Jeong S, Lee I, Blaauw D, Sylvester D (2015) A 5.8 nW CMOS wake-up timer for ultra-low-power wireless applications. IEEE J Solid State Circuits 50(8):1754–1763. doi:10.1109/JSSC.2015.2413133

    Article  Google Scholar 

  31. Jang T, Choi M, Jeong S, Bang S, Sylvester D, Blaauw D (2016) A 4.7 nW 13.8 ppm/°C self-biased wakeup timer using a switched-resistor scheme. In: IEEE international solid-state circuits conference, San Francisco, CA, 31 Jan 2016–4 Feb 2016

    Google Scholar 

  32. Kuo YS, Pannuto P, Kim G, Foo ZY, Lee I, Kempke B, Dutta P, Blaauw D, Lee Y (2014) MBus: a 17.5 pJ/bit/chip portable interconnect bus for millimeter-scale sensor systems with 8 nW standby power. In: IEEE custom integrated circuits conference. doi:10.1109/CICC.2014.6946046

  33. Chen YP, Fojtik M, Blaauw D, Sylvester D (2012) A 2.98 nW bandgap voltage reference using a self-tuning low leakage sample and hold. In: Symposium on VLSI circuits. doi:10.1109/VLSIC.2012.6243859

  34. Choi M, Lee I, Jang TK, Blaauw D, Sylvester D (2014) A 23 pW, 780 ppm/°C resistor-less current reference using subthreshold MOSFETs. In: European solid state circuits conference. doi:10.1109/ESSCIRC.2014.6942036

  35. Lee Y, Bang S, Lee I, Kim Y, Kim G, Ghead MH, Pannuto P, Dutta P, Sylvester D, Blaauw D (2013) A modular 1 mm3 die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy harvesting. IEEE J Solid State Circuits 48(1):229–243. doi:10.1109/JSSC.2012.2221233

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2012M3A6A6054193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inhee Lee or Yoonmyung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, I., Lee, Y. (2017). Circuit Design in mm-Scale Sensor Platform for Future IoT Applications. In: Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-33201-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33201-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33200-0

  • Online ISBN: 978-3-319-33201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics