Skip to main content

Health Sensor Data Analysis for a Hospital and Developing Countries

  • Chapter
  • First Online:
Smart Sensors and Systems

Abstract

We present two types of sensor data analysis for medical and healthcare. One sensor dataset is collected in a hospital for medical purposes. We gathered accelerometer data and RFID data of real nursing in the hospital. We provide the real nursing dataset for mobile activity recognition which could be used for supervised machine learning, and also the big data combined with the patients’ medical records and sensors tried for 2 years. The other sensor dataset is collected in a developing country. We developed an eHealth system that comprises a set of sensor devices in an attache case. The first checkup was provided to 16,741 subjects. After 1 year, 2361 subjects participated in the second checkup, and the blood pressure of these subjects was significantly decreased (P < 0. 001). Based on these results we proposed a cost-effective method using a predictor, to ensure sustainability of the program in developing countries

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sackett DL, Rosenberg WM, Gray JM, Haynes RB, Richardson WS (1996) Evidence based medicine: what it is and what it isn’t. BMJ 312(7023):71–72

    Article  Google Scholar 

  2. Oberg PA, Togawa T, Spelman FA (eds) (2006) Sensors applications, sensors in medicine and health care, vol 3. Wiley, New York

    Google Scholar 

  3. Ko J, Lu C, Srivastava MB, Stankovic JA, Terzis A, Welsh M (2010) Wireless sensor networks for healthcare. Proc IEEE 98(11):1947–1960

    Article  Google Scholar 

  4. Panella M, Marchisio S, Di Stanislao F (2003) Reducing clinical variations with clinical pathways: do pathways work? Int J Qual Health Care 15:509–521

    Article  Google Scholar 

  5. Rotter T, Kinsman L, James E, Machotta A, Gothe H, Willis J, Snow P, Kugler J (2010) Clinical pathways: effects on professional practice, patient outcomes, length of stay and hospital costs. Cochrane Database Syst Rev CD006632. http://www.ncbi.nlm.nih.gov/pubmed/20238347

  6. Ward JA, Lukowicz P, Tröster G, Starner TE (2006) Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans Pattern Anal Mach Intell 28:1553–1566

    Article  Google Scholar 

  7. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT (2010) A survey of mobile phone sensing. IEEE Commun Mag 48:140–150

    Article  Google Scholar 

  8. Roggen D, Troster G, Lukowicz P, Ferscha A, Millan JDR, Chavarriaga R (2013) Opportunistic human activity and context recognition. Computer 46:36–45. http://www.computer.org/csdl/mags/co/2013/02/mco2013020036-abs.html

    Article  Google Scholar 

  9. Naya F, Ohmura R, Takayanagi F, Noma H, Kogure K (2006) Workers’ routine activity recognition using body movements and location information. In: 2006 10th IEEE international symposium on wearable computers, pp 105–108. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4067734

  10. Tentori M, Favela J (2008) Monitoring behavioral patterns in hospitals through activity-aware computing. In: 2008 Second international conference on pervasive computing technologies for healthcare. IEEE, New York, pp 173–176. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4571062

    Chapter  Google Scholar 

  11. Osmani V, Balasubramaniam S, Botvich D (2008) Human activity recognition in pervasive health-care: supporting efficient remote collaboration. J Netw Comput Appl 31(4):628–655. http://linkinghub.elsevier.com/retrieve/pii/S1084804507000719

    Article  Google Scholar 

  12. Inoue S, Ueda N, Nohara Y, Nakashima N (2015) Mobile activity recognition for a whole day: recognizing real nursing activities with big dataset. In: ACM international conference on pervasive and ubiquitous computing (Ubicomp), Osaka

    Google Scholar 

  13. Inoue S, Ueda N, Nohara Y, Nakashima N (2015) Understanding nursing activities with long-term mobile activity recognition with big dataset. In: The 47th ISCIE international symposium on stochastic systems theory and its applications (SSS), Hawaii, p 10

    Google Scholar 

  14. Nohara Y, Sozo I, Nakashima N, Naonori U, Kitsuregawa M (2012) Large-scale sensor dataset in a hospital. In: International workshop on pattern recognition for healthcare analytics, Tsukuba, Japan, p 4. http://sozolab.jp/publications/176

    Google Scholar 

  15. Bao L, Intille SS (2004) Pervasive computing. Lecture notes in computer science, vol 3001. Springer, Berlin. http://www.springerlink.com/content/9aqflyk4f47khyjd http://link.springer.com/10.1007/b96922

  16. Zhang M, Sawchuk A (2012) Motion primitive-based human activity recognition using a bag-of-features approach. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium (1), pp 631. http://dl.acm.org/citation.cfm?doid=2110363.2110433 http://dl.acm.org/citation.cfm?id=2110433

  17. Zhang M, Sawchuk AA (2011) A feature selection-based framework for human activity recognition using wearable multimodal sensors. In: International Conference on Body Area Networks, pp. 92–98. http://dl.acm.org/citation.cfm?id=2318776.2318798

    Google Scholar 

  18. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  19. Hattori Y, Inoue S, Hirakawa G (2011) A large scale gathering system for activity data with mobile sensors. In: 2011 15th annual international symposium on wearable computers, pp 97–100

    Google Scholar 

  20. Kawaguchi N, Ogawa N, Iwasaki Y (2011) HASC challenge: gathering large scale human activity corpus for the real-world activity understandings. In: Proceedings of the 2nd augmented human international conference, p 27. http://dl.acm.org/citation.cfm?id=1959853

  21. Chavarriaga R, Sagha H, Calatroni A, Digumarti ST, Troster G, Millan JDR, Roggen D (2013) The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn Lett 34:2033–2042

    Article  Google Scholar 

  22. Roggen D, Calatroni A, Rossi M, Holleczek T, Forster K, Troster G, Lukowicz P, Bannach D, Pirkl G, Ferscha A, Doppler J, Holzmann C, Kurz M, Holl G, Chavarriaga R, Sagha H, Bayati H, Creatura M, Millan JdR (2010) Collecting complex activity datasets in highly rich networked sensor environments. In: Seventh international conference on networked sensing systems (INSS)

    Google Scholar 

  23. Ala A (2011) Global status report on noncommunicable diseases 2010. World Health Organization, Geneva. ISBN: 978-92-4-156422-9

    Google Scholar 

  24. World Health Organization (2012) Non-communicable diseases - a major health challenge of the 21st century. World Health Statistics 2012. World Health Organization, Geneva, pp 34–37

    Google Scholar 

  25. World Health Organization (2011) mHealth - new horizons for health through mobile technologies: based on the findings of the second global survey on eHealth. Global observatory for eHealth series, vol 3. World Health Organization, Geneva. ISBN: 978-92-4-156425-0

    Google Scholar 

  26. Nohara Y, Kai E, Ghosh PP, Islam R, Ahmed A, Kuroda M, Inoue S, Hiramatsu T, Kimura M, Shimizu S, Kobayashi K, Baba Y, Kashima H, Tsuda K, Sugiyama M, Blondel M, Ueda N, Kitsuregawa M, Nakashima N (2015) Health checkup and telemedical intervention program for preventive medicine in developing countries: verification study. J Med Internet Res 17(1):e2. http://www.jmir.org/2015/1/e2, PMID: 25630348

  27. Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P (eds) (2006) Disease control priorities in developing countries, 2nd ed. World Bank and Oxford University Press, Washington, DC. ISBN:10: 0-8213-6179-1

    Google Scholar 

  28. IEEE STANDARD ASSOCIATION (2012) IEEE standard for local and metropolitan area networks - part 15.6: wireless body area networks, IEEE Std 802.15.6-2012. ISBN: 978-0-7381-7206-4

    Google Scholar 

  29. Metabolic syndrome criteria of International Diabetic Federation (2006) http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf. Archived at http://www.webcitation.org/5a1oMi3ZC

  30. Waist circumference and waist-hip ratio: report of a WHO expert consultation (2008) http://whqlibdoc.who.int/publications/2011/9789241501491_eng.pdf. Archived at http://www.webcitation.org/6EbZ4xEh2

  31. National Institutes of Health, National Heart, Lung, and Blood Institute (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults; the evidence report. Obes Res 6(suppl 2):51S–209S.

    Google Scholar 

  32. Cifkova R, Erdine S, Fagard R, Farsang C, Heagerty AM, Kiowski W, Kjeldsen S, Lüscher T, Mallion JM, Mancia G, Poulter N, Rahn KH, Rodicio JL, Ruilope LM, van Zwieten P, Waeber B, Williams B, Zanchetti A, ESH/ESC Hypertension Guidelines Committee (2003) Practice guidelines for primary care physicians: 2003 ESH/ESC hypertension guidelines. J Hypertens 21(10):1779–1786 PMID:14508180

    Google Scholar 

  33. Global guideline for type 2 diabetes of the International Diabetes Federation (2005) http://www.idf.org/webdata/docs/IDF%20GGT2D.pdf. Archived at http://www.webcitation.org/6KfOmZlWs

  34. Ministry of Health, Labor and Welfare of Japan (2012) National health and nutrition survey in Japan (written in Japanese). http://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h24-houkoku.pdf, Archived at http://www.webcitation.org/6R4ERJcJB

  35. Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A (2013) Low-cost technologies for medical diagnostics in low-resource settings. Expert Opin Med Diagn 7(3):243–255. PMID:23480559

    Article  Google Scholar 

  36. Mohan V, Deepa M, Pradeepa R, Prathiba V, Datta M, Sethuraman R, Rakesh H, Sucharita Y, Webster P, Allender S, Kapur A, Anjana RM (2012) Prevention of diabetes in rural India with a telemedicine intervention. J Diabetes Sci Technol 6(6):1355–1364. PMID:23294780

    Article  Google Scholar 

  37. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, Indian Diabetes Prevention Programme (IDPP) (2006) The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49(2):289–297. PMID:16391903

    Google Scholar 

  38. Rajput ZA, Mbugua S, Amadi D, Chepngeno V, Saleem JJ, Anokwa Y, Hartung C, Borriello G, Mamlin BW, Ndege SK, Were MC (2012). Evaluation of an Android-based mHealth system for population surveillance in developing countries. J Am Med Inform Assoc 19(4):655–659. PMID:22366295

    Article  Google Scholar 

  39. Ramachandran A, Snehalatha C, Ram J, Selvam S, Simon M, Nanditha A, Shetty AS, Godsland IF, Chaturvedi N, Majeed A, Oliver N, Toumazou C, Alberti KG, Johnston DG (2013) Effectiveness of mobile phone messaging in prevention of type 2 diabetes by lifestyle modification in men in India: a prospective, parallel-group, randomized controlled trial. Lancet Diabetes Endocrinol 1(3):191–198. PMID:24622367

    Article  Google Scholar 

  40. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108(5):393–397. PMID:10811564

    Article  Google Scholar 

  41. Kai E, Rebeiro-Hargrave A, Inoue S, Nohara Y, Islam R, Nakashima N, Ahmed A (2014) Empowering the healthcare worker using the portable health clinic. In: Proceedings of 28th IEEE international conference on advanced information networking and applications (AINA2014), May 13–16, Victoria, Canada. IEEE, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Nohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nohara, Y., Inoue, S., Nakashima, N. (2017). Health Sensor Data Analysis for a Hospital and Developing Countries. In: Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-33201-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33201-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33200-0

  • Online ISBN: 978-3-319-33201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics