Skip to main content

Urine Microchip Sensing System

  • Chapter
  • First Online:
Book cover Smart Sensors and Systems

Abstract

The use of biosensors in intelligent electronics is a hot and popular topic. Various professionals, multidisciplinary, and cross-domain integrations in terms of chemical engineering, electrical engineering, medicine, industrial design, and manufacturers have been developed in recent years. In this chapter, a urine sensing system is introduced. The development of a urine detection device is mainly aimed at the essential indexes of chronic kidney diseases for homecare. Renal failure and complications include acute or chronic urinary tract obstruction, hepatic failure, and nephritic syndrome. At present, more than 2000 people per million worldwide have to rely on hemodialysis. The majority of patients with end stage renal disease have limited mobility, and patients must go to the hospital for diagnosis. Traditional urine detection requires a great deal of duty time prior to a patient obtaining the report. Therefore, this urine sensing system is expected to achieve fast detection and lower cost for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harta JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Mini-review: some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37(5):789–830

    Article  Google Scholar 

  2. Mattix HJ, Hsu CY, Shaykevich S, Curhan G (2002) Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race. J Am Soc Nephrol 13:1034–1039

    Google Scholar 

  3. Sevillano-cabeza A, Herráez-Hernández R, Campíns-Falcó P (1991) Evaluation and elimination of the interference effects of three cephalosporins on the kinetic-spectrophotometric determination of creatinine in serum using the Jaffé reaction. Anal Lett 24:1741–1766

    Article  Google Scholar 

  4. Dsakai T, Ohta H, Ohno N, Imai J (1995) Routine assay of creatinine in newborn baby urine by spectrophotometric flow-injection analysis. Anal Chim Acta 308:446–450

    Article  Google Scholar 

  5. McClatchey KD (2002) Clinical laboratory medicine, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  6. Mohabbati-Kalejahi E, Azimirad V, Bahrami M, Ganbari A (2012) A review on creatinine measurement techniques. Talanta 97:1–8

    Article  Google Scholar 

  7. Tsuchida T, Yoda K (1983) Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum. Clin Chem 29:51–55

    Google Scholar 

  8. Km EJ, Haruyama T, Yanagida Y, Kobatake E, Aizawa M (1999) Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system. Anal Chim Acta 394:225–231

    Article  Google Scholar 

  9. Meyerhoff M, Rechnitz GA (1976) An activated enzyme electrode for creatinine. Anal Chim Acta 85:277–285

    Article  Google Scholar 

  10. Shih YT, Huang HJ (1999) A creatinine deiminase modified polyaniline electrode for creatinine analysis. Anal Chim Acta 392:143–150

    Article  Google Scholar 

  11. Huang CJ, Lin JL, Chen PH, Syu MJ, Lee GB (2011) A multi-functional electrochemical sensing system using microfluid technology for detection of urea and creatinine. Electrophoresis 32(8):931–938

    Article  Google Scholar 

  12. Jurkiewicz M, Alegret S, Almirall J, García M, Fàbregas E (1998) Development of a biparametric bioanalyser for creatinine and urea. Validation of the determination of biochemical parameters associated with hemodialysis. Analyst 123:1321–1327

    Article  Google Scholar 

  13. Wen TT, Zhu WY, Xue C, Wu JH, Han Q, Wang X, Zhou XM, Jiang HJ (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180–185

    Article  Google Scholar 

  14. Wulff G, Sharhan A, Zabrocki K (1973) Enzyme analogue built polymers and their use for the resolution of racements. Tetrahedron Lett 14:4329–4332

    Article  Google Scholar 

  15. Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14

    Article  Google Scholar 

  16. Mosbach K, Haupt K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504

    Article  Google Scholar 

  17. Masque N, Marce RM, Borrull F, Cormack PAG, Sherrington DC (2000) Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water. Anal Chem 72:4122–4126

    Article  Google Scholar 

  18. Sellergren B (2001) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  19. Delaney TP, Mirsky VM, Wolfbeis OS (2002) Capacitive creatinine sensor based on a photografted molecularly imprinted polymer. Electroanalysis 14:221–224

    Article  Google Scholar 

  20. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2003) Molecular imprinting: from fundamentals to applications. Weinheim, Wiley-VCH

    Google Scholar 

  21. Sergeyeva TA, Piletsky SA, Piletska EV, Brovko OO, Karabanova LV, Sergeeva LM, El'skaya AV, Turner APF (2003) In-situ formation of porous molecularly imprinted polymer membranes. Macromolecules 36:7352–7357

    Article  Google Scholar 

  22. Yan M, Ramström O (eds) (2005) Molecularly imprinted materials: science and technology. Marcel Dekker, New York

    Google Scholar 

  23. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22(6):1474–1489

    Article  Google Scholar 

  24. Li S, Ge Y, Piletsky SA, Lunec J (eds) (2012) Molecularly imprinted sensors: overview and applications. Elsevier, Oxford

    Google Scholar 

  25. Uchida A, Kitayama Y, Takano E, Ooya T, Takeuchi T (2013) Supraparticles comprised of molecularly imprinted nanoparticles and modified gold nanoparticles as a nanosensor platform. RSC Adv 3:25306–25311

    Article  Google Scholar 

  26. Takeuchi T, Sunayama H (2014) Molecularly imprinted polymers. Encyclopedia of polymeric nanomaterials. Springer, Heidelberg, pp 1–5

    Book  Google Scholar 

  27. Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27(6):297–401

    Article  Google Scholar 

  28. Lakshmi D, Prasad BB, Sharma PS (2006) Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode. Talanta 70(2):272–280

    Article  Google Scholar 

  29. Sharma PS, Lakshmi D, Prasad BB (2007) Highly sensitive and selective detection of creatinine by combined use of MISPE and a complementary MIP-sensor. Chromatographia 65(7–8):419–427

    Article  Google Scholar 

  30. Lakshmi D, Sharma PS, Prasad BB (2007) Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine. Biosens Bioelectron 22(12):3302–3308

    Article  Google Scholar 

  31. Sergeyeva TA, Gorbach LA, Piletska EV, Piletsky SA, Brovko OO, Honcharova LA, Lutsyk OD, Sergeeva LM, Zinchenko OA, El’skaya AV (2013) Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes. Anal Chim Acta 770:161–168

    Article  Google Scholar 

  32. Subrahmanyam S, Piletsky SA, Piletska EV, Chen BN, Karim K, Turner APF (2001) ‘Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16(9–12):631–637

    Article  Google Scholar 

  33. Tsai HA, Syu MJ (2005) Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor. Anal Chim Acta 539:107–116

    Article  Google Scholar 

  34. Tsai HA, Syu MJ (2005) Synthesis of creatinine imprinted poly(β-cyclodextrin) for the specific binding of creatinine. Biomaterials 26:2759–2766

    Article  Google Scholar 

  35. Hsieh RY, Tsai HA, Syu MJ (2006) Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials 27(9):2083–2089

    Article  Google Scholar 

  36. Chang YS, Ko TH, Hsu TR, Syu MJ (2009) Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine. Anal Chem 81(6):2098–2105

    Article  Google Scholar 

  37. Syu MJ, Hsu TR, Lin ZK (2010) Synthesis of recognition matrix from 4-methylamino-N-allylnaphthalimide with fluorescent effect for the imprinting of creatinine. Anal Chem 82(21):8821–8829

    Article  Google Scholar 

  38. Tsai HA, Syu MJ (2011) Preparation of imprinted poly(tetraethoxysilanol) sol-gel for the specific uptake of creatinine. Chem Eng J 168:1369–1376

    Article  Google Scholar 

  39. Canoa P, Simón-Vázquez R, Popplewell J, González-Fernández Á (2015) A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance. Biosens Bioelectron 74:376–383

    Article  Google Scholar 

  40. Wang YY, Han MA, Liu GS, Hou XD, Huang YN, Wu KB, Li CY (2015) Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens Bioelectron 74:792–798

    Article  Google Scholar 

  41. Zhu WH, Xuan CL, Liu GL, Chen Z, Wang W (2015) A label-free fluorescent biosensor for determination of bovine serum albumin and calf thymus DNA based on gold nanorods coated with acridine orange-loaded mesoporous silica. Sens Actuators B Chem 220:302–308

    Article  Google Scholar 

  42. Park KM, Lee SK, Sohn YS, Choi SY (2008) BioFET sensor for detection of albumin in urine. Electron Lett 44(3):185–186

    Article  Google Scholar 

  43. Park KY, Sohn YS, Kim CK, Kim HS, Bae YS, Choi SY (2008) Development of FET-type albumin sensor for diagnosing nephritis. Biosens Bioelectron 23(12):1904–1907

    Article  Google Scholar 

  44. Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P (2014) A novel molecularly imprinted chitosan-acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin. Analyst 139(23):6160–6167

    Article  Google Scholar 

  45. Das A, Bhadri P, Beyette FR, Am J, Bishop P, Timmons W (2006) A potentiometric sensor system with integrated circuitry for in situ environmental monitoring. Sixth IEEE conference on nanotechnology, Cincinnati, Ohio, USA, 17–20 June 2006, pp 917–920

    Google Scholar 

  46. Nien-Hsuan C, Jung-Chuan C, Tai-Ping S, Shen-Kan H (2006) Study on the disposable urea biosensors based on PVC-COOH membrane ammonium ion-selective electrodes. IEEE Sensors J 6:262–268

    Article  Google Scholar 

  47. Ahmadi MM, Jullien GA (2005) A very low power CMOS potentiostat for bioimplantable applications. Proceedings of the fifth international workshop on system-on-chip for real-time applications, Banff, Alberta, Canada, 20–24 July 2005, pp 184–189

    Google Scholar 

  48. Wen-Yaw C, Paglinawan AC, Ying-Hsiang W, Tsai-Tseng K (2007) A 600 μW readout circuit with potentiostat for amperometric chemical sensors and glucose meter applications. IEEE conference on electron devices and solid-state circuits, Tainan, 20–22 Dec 2007, pp 1087 − 1090

    Google Scholar 

  49. Ahmadi MM, Jullien GA (2009) Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans Circuits Syst I Regul Pap 56:1339–1348

    Article  MathSciNet  Google Scholar 

  50. Martin SM, Gebara FH, Strong TD, Brown RB (2009) A fully differential potentiostat. IEEE Sensors J 9:135–142

    Article  Google Scholar 

  51. Schienle M, Paulus C, Frey A et al (2004) A fully electronic DNA sensor with 128 positions in-pixel ADC. IEEE J Solid-State Circuits 39(12):2438–2445

    Article  Google Scholar 

  52. Hassibi A, Vikalo H, Riechmann JL et al (2009) Real-time DNA microarray analysis. Nucleic Acids Res 37(20), e132

    Article  Google Scholar 

  53. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257

    Article  Google Scholar 

  54. Yang C, Rairigh D, Mason A (2007) Fully integrated impedance spectroscopy systems for biochemical sensor array. Biomedical circuits and systems conference, Montreal, QC, 27–30 Nov 2007, pp 21–24

    Google Scholar 

  55. Jafari HM, Genov R (2011) CMOS impedance spectrum analyzer with dual-slope multiplying ADC. Biomedical circuits and systems conference, San Diego, CA, 10–12 Nov 2011, pp 361–364

    Google Scholar 

  56. Yang C, Jadhav SR, Worden RM et al (2009) Compact low-power impedance-to-digital converter for sensor array microsystems. IEEE J Solid-State Circuits 44(10):2844–2855

    Article  Google Scholar 

  57. Liu X, Rairigh D, Mason A (2010) A fully integrated multi-channel impedance extraction circuit for biosensor arrays. Proceedings of 2010 I.E. international symposium on circuits and systems, Paris, 30 May 2010–2 June 2010, pp 3140–3143

    Google Scholar 

  58. Rahal M, Demosthenous A, Bayford R (2009) An integrated common-mode feedback topology for multi-frequency bioimpedance imaging. European solid-state circuits conference, Athens, 14–18 Sept 2009, pp 416–419

    Google Scholar 

  59. Aguirre J, Medrano N, Calvo B, Celma S, Azcona C (2011) An analog lock-in amplifier for embedded sensor electronic interfaces. European conference on circuit theory and design (ECCTD), Linkoping, 29–31 Aug 2011, pp 425–428

    Google Scholar 

  60. Zou X, Xu X, Yao L, Lian Y (2009) A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J Solid-State Circuits 44(4):1067–1077

    Article  Google Scholar 

  61. Yazicioglu RF, Merken P, Puers R, Hoof CV (2007) A 60 μW 60 nV/√Hz readout frond-end for portable biopotential acquisition system. IEEE J Solid-State Circuits 42(5):1100–1110

    Article  Google Scholar 

  62. Liu CC, Chang SJ, Huang GY, Lin YZ (2010) A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits 45(4):731–740

    Article  Google Scholar 

  63. Johns D, Martin K (1997) Analog integrated circuit design. John Wiley & Sons, New York

    MATH  Google Scholar 

  64. Chang HW, Huang HY, Juan YH, Wang WS, Luo CH (2013) Adaptive successive approximation ADC for biomedical acquisition system. Microelectron J 44(9):729–736

    Article  Google Scholar 

  65. Chip Implementation Center (2010) CIC referenced flow for mixed-signal IC design (Versio1.0). Taiwan

    Google Scholar 

  66. Lin C-P (2014) Post-layout simulation verification with nanosim. CIC Training Courses, http://www.synopsys.com/support/li/installation/documents/archive/iuguxu2003-09.pdf

  67. Synopsys (2003) Nanosim integration with VCS manual. Version U-2003.03, http://www.siue.edu/~gengel/ece585WebStuff/OVI_VerilogA.pdf

  68. Open Verilog International (1996) Verilog-A language reference manual. Version 1.0, http://www.siue.edu/~gengel/ece585WebStuff/OVI_VerilogA.pdf

  69. Eckardt KU, Coresh J, Devuyst O et al (2013) Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382:158–169

    Article  Google Scholar 

  70. Coresh J, Selvin E, Stevens LA et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298:2038–2047

    Article  Google Scholar 

  71. Radhakrishnan J, Remuzzi G, Saran R et al (2014) Taming the chronic kidney disease epidemic: a global view of surveillance efforts. Kidney Int 86:246–250

    Article  Google Scholar 

  72. KDIGO (2012) Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3(2013):1–150

    Google Scholar 

  73. Levey AS, de Jong PE, Coresh J et al (2011) The definition, classification and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int 80:17–28

    Article  Google Scholar 

  74. National Institute for Health and Clinical Excellence (NICE) (2014) Chronic kidney disease: early identification and management of chronic kidney disease in adults in primary and secondary care. Clin Guide 182

    Google Scholar 

  75. National Kidney Foundation (2015) KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 66:884–930

    Article  Google Scholar 

  76. Hillege HL, Fidler V, Diercks GFH et al (2002) Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106:1777–1782

    Article  Google Scholar 

  77. Cote AM, Brown MA, Lam E et al (2008) Diagnostic accuarcy of urinary spot protein: creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. BMJ 336:1003–1006

    Article  Google Scholar 

  78. Miller WG, Bruns DE, Hortin GL et al (2009) Cuurent issues in management and reporting of urinary albumin excretion. Clin Chem 55:24–38

    Article  Google Scholar 

  79. McTaggart MP, Newall RG, Hirst JA et al (2014) Diagnostic accuracy of point-of-care tests for detecting albuminuria. Ann Intern Med 160:550–557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsing Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luo, CH. et al. (2017). Urine Microchip Sensing System. In: Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-33201-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33201-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33200-0

  • Online ISBN: 978-3-319-33201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics