Skip to main content

Viral Oncolysis of Glioblastoma

  • Chapter
  • First Online:
Neurotropic Viral Infections

Abstract

The current state of replication-competent or replication-selective oncolytic viral treatment of malignant astrocytomas is reviewed. This includes studies examining the DNA viruses herpes simplex type I and adenovirus, both of which can be engineered to replicate only in dividing cancer cells, and RNA viruses, including reovirus, measles virus, Newcastle disease virus (NDV), and vesicular stomatitis virus (VSV), some of which replicate selectively in brain tumors because of transformed cellular defects in antiviral immunity and others which require modification to render them nonpathogenic in health brain tissue while destroying resident tumor cells. Also discussed is that local viral expression of cytokines could overcome the immunosuppressive tumor microenvironment and lead to tumor clearance including immune clearance of distant noninfected tumor cells.

We review efforts to engineer DNA and RNA viruses that can selectively infect glioma cells and maintain the ability to replicate within and destroy tumors while being safe for direct injection into the brain or for systemic delivery. A number of oncolytic viruses have been examined in clinical trials, and safety, to date, has been the rule. Nevertheless, we must continually consider in which ways these vectors can be made safer for use in humans. Ultimately, effective treatment of malignant brain tumors may require a multipronged approach; therefore, as trials using oncolytic viruses are completed, it will become necessary to integrate these treatments both with established therapies such as radiation and chemotherapy, as well as with new ones such as angiogenesis inhibitors and immune modulators. The inclusion of tissue-specific promoters within these constructs and the insertion of genes for immune modulation or antiangiogenic molecules are other approaches that will be important to consider in combination clinical trials. With exercise of proper caution, continued development of the field of oncolytic viruses for the treatment of glioblastoma has great promise as an avenue toward effective therapy for these deadly tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advani SJ et al (1998) Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Ther 5(2):160–165

    Article  CAS  PubMed  Google Scholar 

  • Advani SJ et al (2006) ReVOLT: radiation-enhanced viral oncolytic therapy. Int J Radiat Oncol Biol Phys 66(3):637–646

    Article  CAS  PubMed  Google Scholar 

  • Aghi M, Chiocca EA (2006) Gene therapy for glioblastoma. Neurosurg Focus 20(4), E18

    PubMed  Google Scholar 

  • Aghi M, Rabkin S, Martuza RL (2006) Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J Natl Cancer Inst 98(1):38–50

    Article  CAS  PubMed  Google Scholar 

  • Aghi M et al (2008) Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene 27(30):4249–4254

    Article  CAS  PubMed  Google Scholar 

  • Allen C et al (2006) Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res 66(24):11840–11850

    Article  CAS  PubMed  Google Scholar 

  • Allen C et al (2013) Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther 20(4):444–449

    Article  CAS  PubMed  Google Scholar 

  • Alloussi SH et al (2011) All reovirus subtypes show oncolytic potential in primary cells of human high-grade glioma. Oncol Rep 26(3):645–649

    CAS  PubMed  Google Scholar 

  • Alonso MM et al (2007a) Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 67(24):11499–11504

    Article  CAS  PubMed  Google Scholar 

  • Alonso MM et al (2007b) ICOVIR-5 shows E2F1 addiction and potent antiglioma effect in vivo. Cancer Res 67(17):8255–8263

    Article  CAS  PubMed  Google Scholar 

  • Asada T (1974) Treatment of human cancer with mumps virus. Cancer 34(6):1907–1928

    Article  CAS  PubMed  Google Scholar 

  • Barnard Z et al (2012) Expression of FMS-like tyrosine kinase 3 ligand by oncolytic herpes simplex virus type I prolongs survival in mice bearing established syngeneic intracranial malignant glioma. Neurosurgery 71(3):741–748, discussion 748

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergelson JM et al (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275(5304):1320–1323

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JR et al (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274(5286):373–376

    Article  CAS  PubMed  Google Scholar 

  • Boviatsis EJ et al (1994) Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res 54(22):5745–5751

    CAS  PubMed  Google Scholar 

  • Bradley JD et al (1999) Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Cancer Res 5(6):1517–1522

    CAS  PubMed  Google Scholar 

  • Brown SM et al (1997) The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J Virol 71(12):9442–9449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buijs PR et al (2014) Intravenously injected Newcastle disease virus in non-human primates is safe to use for oncolytic virotherapy. Cancer Gene Ther 21(11):463–471

    Article  CAS  PubMed  Google Scholar 

  • Carceller F et al (2014) Superselective intracerebral catheterization for administration of oncolytic virotherapy in a case of diffuse intrinsic pontine glioma. J Pediatr Hematol Oncol 36(7):e430–e432

    Article  PubMed  Google Scholar 

  • Cassady KA et al (2002) Second-site mutation outside of the U(S)10-12 domain of Deltagamma(1)34.5 herpes simplex virus 1 recombinant blocks the shutoff of protein synthesis induced by activated protein kinase R and partially restores neurovirulence. J Virol 76(3):942–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahlavi A et al (1999) Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Ther 6(10):1751–1758

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti A et al (2004) Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene 23(45):7494–7506

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain MC (2010) Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas. Cancer 116(17):3988–3999

    Article  CAS  PubMed  Google Scholar 

  • Chambers R et al (1995) Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci U S A 92(5):1411–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheema TA et al (2013) Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A 110(29):12006–12011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80(5):654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiocca EA et al (2004) A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 10(5):958–966

    Article  CAS  PubMed  Google Scholar 

  • Chou J et al (1990) Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250(4985):1262–1266

    Article  CAS  PubMed  Google Scholar 

  • Chung YS et al (2006) Oncolytic recombinant herpes simplex virus for treatment of orthotopic liver tumors in nude mice. Int J Oncol 28(4):793–798

    CAS  PubMed  Google Scholar 

  • Comins C et al (2008) Reovirus: viral therapy for cancer ‘as nature intended’. Clin Oncol (R Coll Radiol) 20(7):548–554

    Article  CAS  Google Scholar 

  • Csatary LK et al (2004) MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol 67(1-2):83–93

    Article  CAS  PubMed  Google Scholar 

  • D’Arpa P, Beardmore C, Liu LF (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50(21):6919–6924

    PubMed  Google Scholar 

  • Dambach MJ et al (2006) Oncolytic viruses derived from the gamma34.5-deleted herpes simplex virus recombinant R3616 encode a truncated UL3 protein. Mol Ther 13(5):891–898

    Article  CAS  PubMed  Google Scholar 

  • de Groot JF et al (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12(3):233–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Vecchio M et al (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685

    Article  PubMed  Google Scholar 

  • Dempsey MF et al (2006) Assessment of 123I-FIAU imaging of herpes simplex viral gene expression in the treatment of glioma. Nucl Med Commun 27(8):611–617

    Article  PubMed  Google Scholar 

  • Detta A et al (2003) Proliferative activity and in vitro replication of HSV1716 in human metastatic brain tumours. J Gene Med 5(8):681–689

    Article  PubMed  Google Scholar 

  • Duntsch CD et al (2004) Recombinant vesicular stomatitis virus vectors as oncolytic agents in the treatment of high-grade gliomas in an organotypic brain tissue slice-glioma coculture model. J Neurosurg 100(6):1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Elankumaran S, Rockemann D, Samal SK (2006) Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol 80(15):7522–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint J, Shenk T (1997) Viral transactivating proteins. Annu Rev Genet 31:177–212

    Article  CAS  PubMed  Google Scholar 

  • Forsyth P et al (2008) A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 16(3):627–632

    Article  CAS  PubMed  Google Scholar 

  • Freeman AI et al (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13(1):221–228

    Article  CAS  PubMed  Google Scholar 

  • Fueyo J et al (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Pelus LM (2006) Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5(5):1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Fulci G et al (2006) Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci U S A 103(34):12873–12878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulci G et al (2007) Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res 67(19):9398–9406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz C, Gromeier M (2010) Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 21(2–3):197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JN, Weller SK (1998) In vitro processing of herpes simplex virus type 1 DNA replication intermediates by the viral alkaline nuclease, UL12. J Virol 72(11):8772–8781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Manzano C et al (2004) Genetically modified adenoviruses against gliomas: from bench to bedside. Neurology 63(3):418–426

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Manzano C et al (2006) Delta-24 increases the expression and activity of topoisomerase I and enhances the antiglioma effect of irinotecan. Clin Cancer Res 12(2):556–562

    Article  CAS  PubMed  Google Scholar 

  • Goodrum FD, Ornelles DA (1998) p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 72(12):9479–9490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grandi P et al (2009) Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother 9(4):505–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gromeier M, Alexander L, Wimmer E (1996) Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93(6):2370–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gromeier M et al (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 97(12):6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid O et al (2003) Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 21(8):1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Harrow S et al (2004) HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 11(22):1648–1658

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  • Hellums EK et al (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol 7(3):213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilleman MR et al (1962) Immunogenic response to killed measles-virus vaccine. Studies in animals and evaluation of vaccine efficacy in an epidemic. Am J Dis Child 103:444–451

    Article  CAS  PubMed  Google Scholar 

  • Hu-Lowe DD et al (2008) Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 14(22):7272–7283

    Article  CAS  PubMed  Google Scholar 

  • Hunter WD et al (1999) Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 73(8):6319–6326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutzen B et al (2014) Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer 14:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iankov ID et al (2007) Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther 15(1):114–122

    Article  CAS  PubMed  Google Scholar 

  • Ino Y et al (2006) Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res 12(2):643–652

    Article  CAS  PubMed  Google Scholar 

  • Jha BK et al (2013) Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther 21(9):1749–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H et al (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414

    Article  CAS  PubMed  Google Scholar 

  • Jiang H et al (2008) Adenovirus’s last trick: you say lysis, we say autophagy. Autophagy 4(1):118–120

    Article  PubMed  Google Scholar 

  • Jiang H et al (2014) Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. PLoS One 9(5), e97407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurianz K et al (1999) Complement resistance of tumor cells: basal and induced mechanisms. Mol Immunol 36(13-14):929–939

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara Y et al (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97(4):1077–1083

    Article  PubMed  Google Scholar 

  • Kambara H, Saeki Y, Chiocca EA (2005) Cyclophosphamide allows for in vivo dose reduction of a potent oncolytic virus. Cancer Res 65(24):11255–11258

    Article  CAS  PubMed  Google Scholar 

  • Kanai R, Rabkin SD (2013) Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncol 2(2):129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai R et al (2011) A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res 17(11):3686–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai R et al (2012a) Effect of gamma34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J Virol 86(8):4420–4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai R et al (2012b) Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst 104(1):42–55

    Article  CAS  PubMed  Google Scholar 

  • Kaufman HL, Bines SD (2010) OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 6(6):941–949

    Article  CAS  PubMed  Google Scholar 

  • Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15(4):651–659

    CAS  PubMed  Google Scholar 

  • Khuri FR et al (2000) a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 6(8):879–885

    Article  CAS  PubMed  Google Scholar 

  • Kicielinski KP et al (2014) Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther 22(5):1056–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M et al (2002) The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 38(14):1917–1926

    Article  CAS  PubMed  Google Scholar 

  • Kleihues P et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61(3):215–225, discussion 226–229

    Article  PubMed  Google Scholar 

  • Kleijn A et al (2014) The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS One 9(5), e97495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohno S et al (2004) Midkine promoter-based conditionally replicative adenovirus for malignant glioma therapy. Oncol Rep 12(1):73–78

    CAS  PubMed  Google Scholar 

  • Koike S et al (1991) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci U S A 88(3):951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koks CA et al (2015) Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 136(5):E313–E325

    Article  CAS  PubMed  Google Scholar 

  • Komata T et al (2002) Caspase-8 gene therapy using the human telomerase reverse transcriptase promoter for malignant glioma cells. Hum Gene Ther 13(9):1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Kuroda T, Rabkin SD, Martuza RL (2006) Effective treatment of tumors with strong beta-catenin/T-cell factor activity by transcriptionally targeted oncolytic herpes simplex virus vector. Cancer Res 66(20):10127–10135

    Article  CAS  PubMed  Google Scholar 

  • Lam HY et al (2011) Safety and clinical usage of newcastle disease virus in cancer therapy. J Biomed Biotechnol 2011:718710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamfers ML et al (2006) Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol Ther 14(6):779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasner TM et al (1998) Toxicity and neuronal infection of a HSV-1 ICP34.5 mutant in nude mice. J Neurovirol 4(1):100–105

    Article  CAS  PubMed  Google Scholar 

  • Li E et al (1998) Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 72(3):2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liikanen I et al (2011) Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol Ther 19(10):1858–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TC et al (2007) Herpes simplex virus Us3(−) mutant as oncolytic strategy and synergizes with phosphatidylinositol 3-kinase-Akt targeting molecular therapeutics. Clin Cancer Res 13(19):5897–5902

    Article  CAS  PubMed  Google Scholar 

  • Lu L et al (2014) Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma., J Neurooncol

    Google Scholar 

  • Lucio-Eterovic AK, Piao Y, de Groot JF (2009) Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 15(14):4589–4599

    Article  CAS  PubMed  Google Scholar 

  • Lun X et al (2006) Effects of intravenously administered recombinant vesicular stomatitis virus (VSV(deltaM51)) on multifocal and invasive gliomas. J Natl Cancer Inst 98(21):1546–1557

    Article  CAS  PubMed  Google Scholar 

  • Maherally Z et al (2012) Receptors for hyaluronic acid and poliovirus: a combinatorial role in glioma invasion? PLoS One 7(2), e30691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makower D et al (2003) Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res 9(2):693–702

    PubMed  Google Scholar 

  • Markert JM et al (1993) Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32(4):597–603

    Article  CAS  PubMed  Google Scholar 

  • Markert JM et al (2000a) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874

    Article  CAS  PubMed  Google Scholar 

  • Markert JM et al (2000b) Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 10(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Markert JM et al (2009) Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 17(1):199–207

    Article  CAS  PubMed  Google Scholar 

  • Markert JM et al (2012) Preclinical evaluation of a genetically engineered herpes simplex virus expressing interleukin-12. J Virol 86(9):5304–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markert JM et al (2014) A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22(5):1048–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martuza RL (2000) Conditionally replicating herpes vectors for cancer therapy. J Clin Invest 105(7):841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martuza RL et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856

    Article  CAS  PubMed  Google Scholar 

  • Mellinghoff IK et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024

    Article  CAS  PubMed  Google Scholar 

  • Meng C et al (2012) Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch Virol 157(6):1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Mezhir JJ et al (2005) Ionizing radiation activates late herpes simplex virus 1 promoters via the p38 pathway in tumors treated with oncolytic viruses. Cancer Res 65(20):9479–9484

    Article  CAS  PubMed  Google Scholar 

  • Miller CR et al (1998) Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 58(24):5738–5748

    CAS  PubMed  Google Scholar 

  • Mineta T, Rabkin SD, Martuza RL (1994) Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 54(15):3963–3966

    CAS  PubMed  Google Scholar 

  • Mineta T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943

    Article  CAS  PubMed  Google Scholar 

  • Miyatake S et al (1997) Transcriptional targeting of herpes simplex virus for cell-specific replication. J Virol 71(7):5124–5132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyatake SI et al (1999) Hepatoma-specific antitumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo. Gene Ther 6(4):564–572

    Article  CAS  PubMed  Google Scholar 

  • Morley S et al (2004) The dl1520 virus is found preferentially in tumor tissue after direct intratumoral injection in oral carcinoma. Clin Cancer Res 10(13):4357–4362

    Article  CAS  PubMed  Google Scholar 

  • Muik A et al (2012) Semireplication-competent vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol Med (Berl) 90(8):959–970

    Article  CAS  Google Scholar 

  • Mulvihill S et al (2001) Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther 8(4):308–315

    Article  CAS  PubMed  Google Scholar 

  • Myers R et al (2008) Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther 19(7):690–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T et al (2005) Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 23(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Ochiai H et al (2006) Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res 12(4):1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opyrchal M et al (2012) Effective radiovirotherapy for malignant gliomas by using oncolytic measles virus strains encoding the sodium iodide symporter (MV-NIS). Hum Gene Ther 23(4):419–427

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly MS et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  • O’Shea CC et al (2004) Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6(6):611–623

    Article  PubMed  Google Scholar 

  • Paraskevakou G et al (2007) Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther 15(4):677–686

    CAS  PubMed  Google Scholar 

  • Parr MJ et al (1997) Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nat Med 3(10):1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Parsons DW et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perri SR, Annabi B, Galipeau J (2007) Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB J 21(14):3928–3936

    Article  CAS  PubMed  Google Scholar 

  • Phuong LK et al (2003) Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 63(10):2462–2469

    CAS  PubMed  Google Scholar 

  • Quigg M et al (2005) Assessment in vitro of a novel therapeutic strategy for glioma, combining herpes simplex virus HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy. Med Chem 1(5):423–429

    Article  CAS  PubMed  Google Scholar 

  • Rampling R et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7(10):859–866

    Article  CAS  PubMed  Google Scholar 

  • Reardon DA et al (2009) Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 101(12):1986–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth JC et al (2014) Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to aotus nonhuman primates. Hum Gene Ther Clin Dev 25(1):16–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider T et al (2001) Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme. J Neurooncol 53(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Smith JS et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93(16):1246–1256

    Article  CAS  PubMed  Google Scholar 

  • Sonabend AM et al (2006) Oncolytic adenoviral therapy for glioblastoma multiforme. Neurosurg Focus 20(4), E19

    Article  PubMed  Google Scholar 

  • Srivenugopal KS et al (2001) Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res 7(5):1398–1409

    CAS  PubMed  Google Scholar 

  • Stack MS et al (1999) Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340(Pt 1):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanziale SF et al (2002) Ionizing radiation potentiates the antitumor efficacy of oncolytic herpes simplex virus G207 by upregulating ribonucleotide reductase. Surgery 132(2):353–359

    Article  PubMed  Google Scholar 

  • Steiner HH et al (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22(21):4272–4281

    Article  PubMed  Google Scholar 

  • Stojdl DF et al (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4(4):263–275

    Article  CAS  PubMed  Google Scholar 

  • Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan P et al (2000) Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 74(8):3832–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K et al (2001) A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7(1):120–126

    CAS  PubMed  Google Scholar 

  • Takamiya Y et al (1994) AGM-1470 inhibits the growth of human glioblastoma cells in vitro and in vivo. Neurosurgery 34(5):869–875, discussion 875

    Article  CAS  PubMed  Google Scholar 

  • Todo T et al (1999a) Corticosteroid administration does not affect viral oncolytic activity, but inhibits antitumor immunity in replication-competent herpes simplex virus tumor therapy. Hum Gene Ther 10(17):2869–2878

    Article  CAS  PubMed  Google Scholar 

  • Todo T et al (1999b) Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 10(17):2741–2755

    Article  CAS  PubMed  Google Scholar 

  • Todo T et al (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A 98(11):6396–6401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda H et al (2007) Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res 67(6):2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Tsamis KI et al (2013) Combination treatment for glioblastoma cells with tumor necrosis factor-related apoptosis-inducing ligand and oncolytic adenovirus delta-24. Cancer Invest 31(9):630–638

    Article  CAS  PubMed  Google Scholar 

  • van Beusechem VW et al (2003) Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors. Gene Ther 10(23):1982–1991

    Article  PubMed  CAS  Google Scholar 

  • van den Hengel SK et al (2013) Heterogeneous reovirus susceptibility in human glioblastoma stem-like cell cultures. Cancer Gene Ther 20(9):507–513

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt WJ et al (2006) The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J Neurosurg 104(4):583–592

    Article  PubMed  Google Scholar 

  • Varghese S et al (2006) Systemic oncolytic herpes virus therapy of poorly immunogenic prostate cancer metastatic to lung. Clin Cancer Res 12(9):2919–2927

    Article  CAS  PubMed  Google Scholar 

  • Vom Berg J et al (2013) Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med 210(13):2803–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vredenburgh JJ et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13(4):1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Wahl ML, Moser TL, Pizzo SV (2004) Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res 59:73–104

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto H et al (2009) Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 69(8):3472–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner KE et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16(6):1405–1409

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guo J, Jia W (1997) Intracerebral recombinant HSV-1 vector does not reactivate latent HSV-1. Gene Ther 4(12):1300–1304

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ et al (2003) Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum Gene Ther 14(2):117–127

    Article  CAS  PubMed  Google Scholar 

  • Washburn B, Schirrmacher V (2002) Human tumor cell infection by Newcastle Disease Virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol 21(1):85–93

    CAS  PubMed  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  • Wilcox ME et al (2001) Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 93(12):903–912

    Article  CAS  PubMed  Google Scholar 

  • Wollmann G, Tattersall P, van den Pol AN (2005) Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79(10):6005–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollmann G, Robek MD, van den Pol AN (2007) Variable deficiencies in the interferon response enhance susceptibility to vesicular stomatitis virus oncolytic actions in glioblastoma cells but not in normal human glial cells. J Virol 81(3):1479–1491

    Article  CAS  PubMed  Google Scholar 

  • Zhan Q et al (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14(4):2361–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2012) Bevacizumab with angiostatin-armed oHSV increases antiangiogenesis and decreases bevacizumab-induced invasion in U87 glioma. Mol Ther 20(1):37–45

    Article  PubMed  CAS  Google Scholar 

  • Zulkifli MM et al (2009) Newcastle diseases virus strain V4UPM displayed oncolytic ability against experimental human malignant glioma. Neurol Res 31(1):3–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Robert L. Martuza, M.D., is supported in part by grants from NINDS (NS032677) and from the Rendina Family Foundation.

William T. Curry, M.D., is supported in part by grants from the Harvard Catalyst Program.

Dipongkor Saha is supported by grant from National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Martuza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saha, D., Martuza, R.L., Curry, W.T. (2016). Viral Oncolysis of Glioblastoma. In: Reiss, C. (eds) Neurotropic Viral Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-33189-8_14

Download citation

Publish with us

Policies and ethics