Skip to main content

Parietal Lobe Syndromes

  • Chapter
  • First Online:
Cognitive, Conative and Behavioral Neurology
  • 1486 Accesses

Abstract

A convenient time to pick up the parietal lobe evolution is perhaps with Homo erectus ~1.8 mya after the brain size had doubled to about 880 cc from the average of 450 cc in the Australopithecines. The basic stone knapping techniques used by these early hominins presumably promoted the elaboration of the parietal spatial network and shape recognition by temporal lobe ventral pathways. This was due to learning by observation, prolonged practice, and sequences of actions that were eventually incorporated into procedural memory circuits. Much later in our evolution, Homo heidelbergensis artifact evidence points to improved visuospatial sketchpad components of working memory model, exemplified by the finding of the Schoningen spears dated to ~400 kya. This suggested an overall improvement in both their working memory and technical ability when compared to Homo erectus, also supporting the emergence of symbolic thinking and allocentric perception (points of view not pertaining to one’s own viewpoint). With the emergence of Neanderthals around 300–200 kya, with the invention of hafting they are sometimes referred to as the technical experts but are thought to have lacked enhanced working memory, extended theory of mind, and shared attention. In Wynn and Coolidge’s viewpoint they lacked enhanced working memory which is the basis of advanced episodic memory, intelligence, language, and theory of mind and therefore probably also lacked modern, recursive-type language [1, 2]. Finally, a more dramatic parietal lobe enlargement occurred relatively recently with parietal globularization (150–100 kya) with vertical expansion and anterior widening (klinorhynchy), unique to modern humans [3]. This may have facilitated neural intra-connectivity, cortico-cortico hyperconnectivity, further visuospatial integration, multimodal processing, as well as improved social communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wynn T, Coolidge FL. The implications of the working memory model for the evolution of modern cognition. Int J Evol Biol. 2011;2011:741357. doi:10.4061/2011/741357.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bruner E. Morphological differences in the parietal lobes within the human genus. Curr Anthropol. 2010;51:77–88.

    Article  Google Scholar 

  3. Bruner E. Geometric morphometrics and paleneurology: brain shape evolution in the genus Homo. J Hum Evol. 2004;47:279–303.

    Article  PubMed  Google Scholar 

  4. Orban GA, Caruana F. The neural basis of human tool use. Front Psychol. 2014;5:310. doi:10.3389/fpsyg.2014.00310.

    PubMed  PubMed Central  Google Scholar 

  5. Bruner E. The evolution of the parietal cortical areas in the human genus: between structure and cognition. In: Broadfield D, Yuan M, Schick K, Toth N, editors. The human brain evolving. Gosport, IN: Stone Age Instiute Press; 2010.

    Google Scholar 

  6. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.

    Article  PubMed  Google Scholar 

  7. Bruner E, Jacobs HI. Alzheimer’s disease: the downside of a highly evolved parietal lobe? J Alzheimers Dis. 2013;35(2):227–40. hub failure hypothesis.

    CAS  PubMed  Google Scholar 

  8. Dehaene S. Number sense. Oxford: Oxford University Press; 2011.

    Google Scholar 

  9. Andersen RA. Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci. 1989;12:377–403.

    Article  CAS  PubMed  Google Scholar 

  10. Culham JC, Kanwisher NG. Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol. 2001;11:157–63.

    Article  CAS  PubMed  Google Scholar 

  11. Todd JJ, Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature. 2004;428(6984):751–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. Visuospatial processing – new neural framework. Nat Rev Neurosci. 2011;12:217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramirez-Bermudez J, Aguilar-Venegas LC, Crail-Melendez D, Espinola-Nadurille M, Nente F, Mendez MF. Cotard syndrome in neurological and psychiatric patients. J Neuropsychiatry Clin Neurosci. 2010;22(4):409–16.

    Article  PubMed  Google Scholar 

  14. Jürgens TP, Schulte LH, May A. Migraine trait symptoms in migraine with and without aura. Neurology. 2014;82(16):1416–24.

    Article  PubMed  Google Scholar 

  15. Ghika J, Ghika-Schmid F, Bogousslasvky J. Parietal motor syndrome: a clinical description in 32 patients in the acute phase of pure parietal strokes studied prospectively. Clin Neurol Neurosurg. 1998;100(4):271–82.

    Article  CAS  PubMed  Google Scholar 

  16. Critchley M. The parietal lobes. London: Hafner Press; 1953.

    Google Scholar 

  17. Sandyk R. Spontaneous pain, hyperpathia and wasting of the hand due to parietal lobe haemorrhage. Eur Neurol. 1985;24:1–3.

    Article  CAS  PubMed  Google Scholar 

  18. Maramattom BV. Parietal wasting and dystonia secondary to a parasagittal mass lesion. Neurol India. 2007;55(2):185.

    Article  PubMed  Google Scholar 

  19. Luria AR. Higher cortical functions in man. London: Tavistock; 1966.

    Google Scholar 

  20. Dix MR. The mechanism and clinical significance of optokinetic nystagmus. Review. J Laryngol Otol. 1980;94(8):845–64.

    Article  CAS  PubMed  Google Scholar 

  21. Lewin W, Phillips CG. Observations on partial removal of the post-central gyrus for pain. J Neurol Neurosurg Psychiatry. 1952;15(3):143–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potagas C, Avdelidis D, Singounas E, Missir O, Aessopos A. Episodic pain associated with a tumor in the parietal operculum: a case report and literature review. Pain. 1997;72(1–2):201–8.

    Article  CAS  PubMed  Google Scholar 

  23. Duncan GH, Albanese MC. Is there a role for the parietal lobes in the perception of pain? Adv Neurol. 2003;93:69–86.

    PubMed  Google Scholar 

  24. Koch C. Consciousness. Cambridge, MA: MIT Press; 2012.

    Google Scholar 

  25. Crick FC, Koch C. Phil Trans R Soc B. 2005;360:1271–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hupé JM. Synesthesia as a neuronal palimpsest. Med Sci (Paris). 2012;28(8-9):765–71.

    Article  Google Scholar 

  27. Brang D, Ramachandran VS. Survival of the synesthesia gene: why do people hear colors and taste words? PLoS Biol. 2011;9(11), e1001205. doi:10.1371/journal.pbio.1001205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Safran AB, Sanda N. Color synesthesia. Insight into perception, emotion and consciousness. Curr Opin Neurol. 2015;28:36–44.

    Article  PubMed  Google Scholar 

  29. Carmichael DA, Down MP, Shillcock RC, Eagleman DM, Simner J. Validating a standardised test battery for synesthesia: does the synesthesia battery reliably detect synesthesia? Conscious Cogn. 2015;33:375–85.

    Google Scholar 

  30. Gibbs SA, Figorilli M, Casaceli G, Proserpio P, Nobili L. Sleep related hypermotor seizures with a right parietal onset. J Clin Sleep Med. 2015;15:953–5.

    Google Scholar 

  31. Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Borner GH, Chen YC, et al. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain. 2015;138(8):2147–60.

    Google Scholar 

  32. Van Beilen M, de Jong BM, Gieteling EW, Renken R, Leenders KL. Abnormal parietal function in conversion paresis. PLoS One. 2011;6(10), e25918. doi:10.1371/journal.pone.0025918.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Battelli L, Pascual-Leone A, Cavanagh P. The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci. 2007;11:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Griffiths TD, Rees G, Tees A, Green GRA, Witton C, Rowe D, et al. Right parietal lobe is involved in the perception of sound movements in humans. Nat Neurosci. 1998;1:74–9.

    Article  CAS  PubMed  Google Scholar 

  35. Van Lancker DR, Kreiman J, Cummings J. Voice perception deficits: neuroanatomical correlates of phonagnosia. J Clin Exp Neuropsychol. 1989;11(5):665–74.

    Article  PubMed  Google Scholar 

  36. Biederman I, Herald S, Xu X, Amir O, Shilowich B. Phonagnosia, a voice homologue to prosopagnosia. J Vis. 2015;15(12):1206. doi:10.1167/15.12.1206.

    Article  Google Scholar 

  37. Van Lancker DR, Cummings JL, Kreiman J, Dobkin BH. Phonagnosia: a dissociation between familiar and unfamiliar voices. Cortex. 1988;24(2):195–209.

    Article  PubMed  Google Scholar 

  38. Moo LR, Slotnick SD, Tesoro MA, Zee DS, Hart J. Interlocking finger test: a bedside screen for parietal lobe dysfunction. J Neurol Neurosurg Psychiatry. 2003;74(4):530–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delis DC, Kaplan E, Kramer JH. D. Delis Kaplan executive function system. San Antonio, TX: Pearson; 2001.

    Google Scholar 

  40. Köhler W. Gestalt psychology. New York, NY: Liveright; 1929.

    Google Scholar 

  41. Ramachandran VS, Hubbard EM. Synaesthesia: a window into perception, thought and language. J Conscious Stud. 2001;8:3–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmann, M. (2016). Parietal Lobe Syndromes. In: Cognitive, Conative and Behavioral Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-33181-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33181-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33179-9

  • Online ISBN: 978-3-319-33181-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics