Ingenane Diterpenoids

  • Giovanni AppendinoEmail author
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 102)


Despite a more recent isolation and chemical characterization when compared to phorbol, along with its chemical instability, limited distribution in Nature, and scarce availability, ingenol is the only Euphorbia diterpenoid that has undergone successful pharmaceutical development, with ingenol 3-angelate (ingenol mebutate, Picato®) entering the pharmaceutical market in 2012 for the treatment of actinic keratosis. The phytochemical, chemical, and biological literature on members of the ingenane class of diterpenoids is reviewed from their first isolation in 1968 through 2015, highlighting unresolved issues both common to phorboids (biogenesis, relationship between molecular targets, and in vivo activity) and specific to ingenol derivatives (two-dimensional representation, in-out stereoisomerism, versatility of binding mode to PKC, and inconsistencies in the structural elucidation of some classes of derivatives). The biogenesis of ingenol is discussed in the light of the Jakupovic proposal of a dissection between the formation of the macrocyclic Euphorbia diterpenoids and the phorboids, and the clinical development of ingenol mebutate is chronicled in the light of its “reverse-pharmacology” focus.


Diterpenoids Ingenol Euphorbia Protein kinase C (PKC) Drug discovery 



This chapter could not have been written without the help of many colleagues and friends. In particular, I am very grateful to Siems Karsten, Fotini Tsichritzis and Sven Jakupovic (Analyticon, Potsdam, Germany) and Franck Jescke for providing me with the material that made it possible to discuss the Jakupovic proposal for the biogenesis of phorboids, to Marco Facini (Sandoz, Munich, Germany) for providing many articles from the early literature on ingenol, and to Louis-Félix Nothias-Scaglia (University of Corsica, France) for his suggestions. A special thanks should also be given to Peter Parson (QIMR Berghofer Medical Research Institute, Brisbane, Australia) and Steven Ogbourne (GeneCology Research Centre, University of the Sunshine Coast, Australia) for carefully reading the biological section of this manuscript and for their suggestions on improving it. Finally, I would like to apologize to my daughter Silvia for the time spent with ingenol and not with her during the summer of 2014, when the first draft of this review was prepared.

My wife Enrica, a medical doctor, medicated me on two occasions when, during my early work on ingenol, I experimented on myself the power of its activity. Were she still with us, she would surely be surprised that an ingenol derivative is now a drug. Jasmin Jakupovic always stimulated me with his ingenuity and inspiring insights, and it is an honor for me to dedicate this work to his memory and to the one of my wife. Paraphrasing a comment made on the premature death of the composer Bellini, what Jasmin lacked could be learnt. What he had could not.


  1. 1.
    Flaschenträger B, v Wolffersdorff R (1934) Über den Giftstoff des Crotonöles. 1. Die Säuren des Crotonöles. Helv Chim Acta 17:1444Google Scholar
  2. 2.
    Adolf W, Opferkuch HJ, Hecker E (1968) Diterpene aus dem Samen von Euphorbia lathyris and ihre tumorpromovierende Wirkung. Fette Seifen Anstrichmittel Ernaehrungsindustrie 70:825Google Scholar
  3. 3.
    Hecker E (1968) Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Res 28:2338Google Scholar
  4. 4.
    Pettersen RC, Ferguson G, Crombie L, Games ML, Pointer DJ (1967) The structure and stereochemistry of phorbol, diterpene parent of co-carcinogens of croton oil. Chem Commun:716Google Scholar
  5. 5.
    Stout GH, Balkenhol WG, Poling M, Hickernell GL (1970) The isolation and structure of daphnetoxin, the poisonous principle of Daphne species. J Am Chem Soc 92:1070CrossRefGoogle Scholar
  6. 6.
    Zechmeister K, Brandl F, Hoppe W, Hecker H, Opferkuch HJ, Adolf WA (1970) Structure determination of the new tetracyclic diterpene ingenol-triacetate with triple product methods. Tetrahedron Lett 11:4075CrossRefGoogle Scholar
  7. 7.
    Hecker E, Schmidt R (1974) Phorbolesters – the irritant and cocarcinogens of Croton tiglium L. Prog Chem Org Nat Prod 31:283Google Scholar
  8. 8.
    Evans FJ, Taylor SE (1983) Pro-inflammatory, tumor promoting and anti-tumour diterpenes of the plant families Euphorbiaceae and Thymelaeaceace. Prog Chem Org Nat Prod 44:17Google Scholar
  9. 9.
    Roe JC, Peirce WEH (1961) Tumor promotion by Euphorbia latices. Cancer Res 21:338Google Scholar
  10. 10.
    Adolf W, Hecker E, Balmain A, Lhomme MF, Nakatani Y, Ourisson G, Ponsinet G, Pryce RJ, Santhanakrishna TS, Matyukhina LG, Saltikova IA (1970) “Euphorbiasteroid” (Epoxy-lathyrol). A new tricyclic diterpene from Euphorbia lathyris L. Tetrahedron Lett 11:2241CrossRefGoogle Scholar
  11. 11.
    Dublyanskaya NF (1937) Chemical characteristics of E. lathyris L. as an oleageneous plant. Biokhimiya 2:521Google Scholar
  12. 12.
    Evans FJ (1986) Naturally occurring phorbol esters. CRC, Boca Raton, FLGoogle Scholar
  13. 13.
    Alder RW, East SP (1996) In/out isomerism. Chem Rev 96:2097CrossRefGoogle Scholar
  14. 14.
    Braekman JD, Daloze D, Dupont A, Pasteels J, Tursch B, Declercq JP, Germain G, van Meerssche M (1980) Secotrinervitane, a novel bicyclic diterpene skeleton from a termite soldier. Tetrahedron Lett 21:2761CrossRefGoogle Scholar
  15. 15.
    Prestwich GD, Tempesta MS, Turner C (1984) Longipenol, a novel tetracyclic diterpene from the termite soldier Longipeditermes longipes. Tetrahedron Lett 25:1531CrossRefGoogle Scholar
  16. 16.
    McKerrall SJ, Jørgensen L, Kuttruff CA, Ungeheuer F, Baran PD (2014) Development of a concise synthesis of (+)-ingenol. J Am Chem Soc 136:5799. Correction: ibid, doi:  10.1126/science.aad8935
  17. 17.
    Funk RI, Olmstead TA, Parvez M (1988) A solution to the in, out-bicyclo[4.4.l]undecan-7-one problem inherent in ingenane total synthesis. J Am Chem Soc 110:3298CrossRefGoogle Scholar
  18. 18.
    Paquette LA, Ross RJ, Springer JP (1988) Stereocontrolled construction of an ingenol prototype having a complete array of oxygenated and unsaturated centers. J Am Chem Soc 110:1988CrossRefGoogle Scholar
  19. 19.
    Winkler JD, Rouse MD, Greaney MF, Harrison SJ, Jeon YT (2002) The first total synthesis of (±)-ingenol. J Am Chem Soc 124:9726CrossRefGoogle Scholar
  20. 20.
    Sorg B, Schmidt R, Hecker E (1987) Structure/activity relationships of polyfunctional diterpenes of the ingenane type. I. Tumor-promoting activity of homologous, aliphatic 3-esters of ingenol and of delta 7,8-isoingenol-3-tetradecanoate. Carcinogenesis 8:1CrossRefGoogle Scholar
  21. 21.
    Appendino G, Tron GC, Cravotto G, Palmisano P, Jakupovic J (1999) An expeditious procedure for the isolation of ingenol from the seeds of Euphorbia lathyris. J Nat Prod 62:76CrossRefGoogle Scholar
  22. 22.
    Wu Q-C, Tang Y-P, Ding A-W, You FQ, Xhang L (2009) 13C-NMR data of three important diterpenes isolated from Euphorbia species. Molecules 14:4454CrossRefGoogle Scholar
  23. 23.
    Yang M, Lu Z, Yu K, Wang Q, Chen X, Li Y, Liu X, Wu W, Guo D-A (2012) Studies on the fragmentation pathways of ingenol esters isolated from Euphorbia esula using IT-MSn and Q-TOF-MS/MS methods in electrospray ionization mode. Int J Mass Spectrom 323–324:55CrossRefGoogle Scholar
  24. 24.
    Ogbourne SM (2011) Crystalline ingenol mebutate. US Patent Appl No 2011/0257262 A1Google Scholar
  25. 25.
    Shi Q-W, Su X-H, Kiyota H (2008) Chemical and pharmacological research of the plants in genus Euphorbia. Chem Rev 108:4295CrossRefGoogle Scholar
  26. 26.
    Tsang W (1985) The stability of alkyl radicals. J Am Chem Soc 110:7343Google Scholar
  27. 27.
    Nonhebel DC (1993) The chemistry of cyclopropylmethyl and related radicals. Chem Soc Rev:347Google Scholar
  28. 28.
    Appendino G, Tron GC, Jarevang T, Sterner O (2001) Unnatural natural products from the transannular cyclization of lathyrane diterpenes. Org Lett 3:1609CrossRefGoogle Scholar
  29. 29.
    Shizuri Y, Ohtsuka J, Kosemura S, Terada Y, Yamamura S (1984) Biomimetic reactions of some macrocyclic diterpenes. Tetrahedron Lett 25:55473Google Scholar
  30. 30.
    Appendino G, Jakupovic J, Varese M, Bombardelli E (1997) Acid and base catalysed rearrangements of 9,10-dioxotaxanes. Tetrahedron Lett 38:727CrossRefGoogle Scholar
  31. 31.
    Schmidt RJ (1987) The biosynthesis of tigliane and related diterpenoids: an intriguing problem. In: Jury SL, Reynolds T, Cutler DF, Evans FJ (eds) The Euphorbiales: chemistry, taxonomy and economic botany. Academic Press, London, p 221Google Scholar
  32. 32.
    Jeske F (1996) Naturstoffe aus Euphorbiaceen. Studien zum konformativen Verhalten von Jatrophanen. PhD Thesis, Freie Universität Berlin, p 676Google Scholar
  33. 33.
    Cane DE (1980) The stereochemistry of allyl pyrophosphate metabolism. Tetrahedron 36:1109CrossRefGoogle Scholar
  34. 34.
    Micali G, Lacarrubba F, Nasca MR, Schwartz RA (2014) Topical pharmacotherapy for skin cancer. Part 1. Pharmacology. J Am Acad Dermatol 70:965eGoogle Scholar
  35. 35.
    Fortin JL, Bitar MP, N’Guedia Kenfack F, Jaboura, S, Fortin L, Coste S, Savio C (2014) Toxicité par Euphorbia lathyris: Efficacité des solutions polyamphotères de lavage. Clin Toxicol 52:383Google Scholar
  36. 36.
  37. 37.
    Appendino G. Unpublished observationsGoogle Scholar
  38. 38.
    Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26:279CrossRefGoogle Scholar
  39. 39.
    Lehmanns JF (1966) Nachdruck der 1.ste Aufl. von 1925. Carl-Hanser, MuenchenGoogle Scholar
  40. 40.
    Friesen JB, McAlpine JB, Chen S-N, Pauli GF (2015) Countercurrent separation of natural products: an update. J Nat Prod 78:1765CrossRefGoogle Scholar
  41. 41.
    Bagavathi R, Sorg B, Hecker E (1991) On the chemistry of ingenol, [IV]: ingenol from seeds of Euphorbia lathyris L. and preparation of (9R)[(9S)]-9-deoxo-9-hydroxyingenol with some corresponding 3- and 9-esters. Z Naturforsch 46b:1425Google Scholar
  42. 42.
    Berge JM, Roberts SM (1979) The synthesis of fused and bridged ring systems by free radical carbocyclization. Synthesis 471Google Scholar
  43. 43.
    Herzig J, Nudelman A, Gottlieb HE, Fischer B (1986) Studies in sugar chemistry. 2. A simple method for O-deacylation of polyacylated sugars. J Org Chem 51:727Google Scholar
  44. 44.
    Bellido Cabello de Alba ML, Appendino G, Pagani A, Munoz Blanco E (2012) Method of isolating ingenol and synthesis of biologically active ingenol derivatives. WO Patent Appl No 2012-EP69452Google Scholar
  45. 45.
    CITES Appendices I–III (2013) Accessed 1 Oct 2015
  46. 46.
    Pandeló JD, Bartholomeeusen K, da Cunha RD, Abreu CM, Glinski J, da Costa TB, Bacchi Rabay AF, Pianowski Filho LF, Dudycz LW, Ranga U, Peterlin BM, Pianowski LF, Tanuri A, Aguiar RS (2014) Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 462–463:328CrossRefGoogle Scholar
  47. 47.
    Kuster RM, Calixto MLC, Sabino KCC, da Costa HB, Tose LV, Romão W, Vaz BG, Silvia AG (2015) Identification of malonyl glucans from Euphorbia tirucalli by ESI-(−)-FT-ICR MS analyses. Phytochem Lett 12:209CrossRefGoogle Scholar
  48. 48.
    Evans FJ, Kinghorn AD (1977) A comparative phytochemical study of the diterpenes of some species of the genus Euphorbia and Elaeophorbia (Euphorbiaceae). Bot J Linn Soc 74:23CrossRefGoogle Scholar
  49. 49.
    Govaerts R, Frodin DG, Radcliffe-Smith A, Carter S (2000) World checklist and bibliography of Euphorbiaceae (with Pandaceae). Royal Botanical Gardens, Kew, RichmondGoogle Scholar
  50. 50.
    Wang H-B, Wang X-Y, Liu L-P, Qin G-W, Kang T-G (2015) Tigliane diterpenoids from Euphorbiaceae and Thymelaeaceae families. Chem Rev 115:2975CrossRefGoogle Scholar
  51. 51.
    Kinghorn AD, Evans FJ (1974) Quantitative gas-liquid chromatographic method for phorbol and related diterpenes as their acetates. J Pharm Pharmacol 26:408CrossRefGoogle Scholar
  52. 52.
    Hergenhahn M, Kusumoto S, Hecker E (1974) Diterpene esters from Euphorbium and their irritant and cocarcinogenic activity. Experientia 30:1438CrossRefGoogle Scholar
  53. 53.
    Adolf W, Chanai S, Hecker E (1983) 3-O-Angeloylingenol, the toxic and skin irritant factor from latex of Euphorbia antiquorum L. (Euphorbiaceae) and from a derived Thai purgative and anthelmintic (vermifuge). Drug J Sci Soc Thailand 9:81Google Scholar
  54. 54.
    Marco JA, Sanz-Cervera JF, Yuste A (1997) Ingenane and lathyrane diterpenes from the latex of Euphorbia canariensis. Phytochemistry 45:563CrossRefGoogle Scholar
  55. 55.
    Hoegberg T, Grue-Sorensen G, Liang X, Horneman AM, Petersen AK (2012) A method of producing ingenol-3-angelate. WO Patent Appl No 2012/010172 A1Google Scholar
  56. 56.
    Seip EH, Hecker E (1982) Skin irritant ingenol esters from Euphorbia esula. Planta Med 46:215CrossRefGoogle Scholar
  57. 57.
    Rizk A, Hammouda FM, Le-Missiry MM, Williamson EM, Evans FJ (1980) Constituents of Egyptian Euphorbiaceae. IX, Irritant and cytotoxic ingenane esters from Euphorbia paralias. Experientia 36:1206CrossRefGoogle Scholar
  58. 58.
    Hohmann J, Evanics F, Berta L, Bartok T (2000) Diterpenoids from Euphorbia peplus. Planta Med 66:291CrossRefGoogle Scholar
  59. 59.
    Jakupovic J, Morgenstern T, Bittner M, Silva M (1998) Diterpenes from Euphorbia peplus. Phytochemistry 47:1601CrossRefGoogle Scholar
  60. 60.
    Upadhyay RR, Samiyeh R, Tafazuli A (1981) Tumor promoting and skin irritant diterpene esters of Euphorbia virgata latex. Neoplasma 28:555Google Scholar
  61. 61.
    Rizk AM, Hammouda FM, El-Missiry MM, Radwan HM, Evans FJ (1985) Constituents of Egyptian Euphorbiaceae. Part 13. Biologically active diterpene esters from Euphorbia peplus. Phytochemistry 24:1605CrossRefGoogle Scholar
  62. 62.
    Abo KA, Evans F (1982) Ingenol esters from the pro-inflammatory fraction of Euphorbia kamerunica. Phytochemistry 31:275Google Scholar
  63. 63.
    Fürstenberger G, Hecker E (1977) New highly irritant Euphorbia Factors from the latex of Euphorbia tirucalli L. Experientia 33:986CrossRefGoogle Scholar
  64. 64.
    Wang L-Y, Wang N-L, Yao X-S, Miyata S, Kitanaka S (2002) Diterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of Xenopus. J Nat Prod 65:1246CrossRefGoogle Scholar
  65. 65.
    Tsukasa M, Yamada A, Jung CC, Ohzuka Y (1988) Effects of Kansui extracts on macrophage immune complex binding. Wakan Iyaku Gakkaishi 5:430Google Scholar
  66. 66.
    Matsumoto T, Cyong JC, Yamada H (1992) Stimulatory effects of ingenols from Euphorbia kansui on the expression of macrophage Fc receptor. Planta Med 58:255CrossRefGoogle Scholar
  67. 67.
    Opferkuch HJ, Hecker E (1982) On the active principles of the spurge family (Euphorbiaceae). IV. Skin irritant and tumor promoting diterpene esters from Euphorbia ingens E. Mey. J Cancer Res Clin Oncol 103:255CrossRefGoogle Scholar
  68. 68.
    Opferkuch HJ, Hecker E (1974) New diterpenoid irritants from Euphorbia ingens. Tetrahedron Lett 3:261CrossRefGoogle Scholar
  69. 69.
    Adolf W, Hecker E (1971) Further new diterpene esters from the irritant and cocarcinogenic seed oil and latex of the caper spurge (Euphorbia lathyris L.). Experientia 27:1393CrossRefGoogle Scholar
  70. 70.
    Adolf W, Hecker E (1975) Active principles of the spurge family. III. Skin irritant and cocarcinogenic factors from the caper spurge. Z Krebsforsch Klin Onkol 84:325Google Scholar
  71. 71.
    Gonzalez Urones J, Basabe Barcala P, Sexmero Cuaradao MJ, Sanchez Marcos I (1988) Diterpenes from the latex of Euphorbia broteri. Phytochemistry 27:207CrossRefGoogle Scholar
  72. 72.
    Li Y, Suo Y (2005) Ingenane diterpene ester constituents from Tibetan medicine Euphorbia wallichii. Zhongcaoyao 36:1763Google Scholar
  73. 73.
    Shi Y-P, Ma B, Joa Z-J, Lahham J, Saleh SA (1996) A new ingenol ester from Euphorbia petiolata. Chin Med Lett 7:439Google Scholar
  74. 74.
    Shi YP, Jia ZJ, Ma B, Saleh SD, Lahham J (1996) Ingenane diterpenes from Euphorbia petiolata. Planta Med 62:260CrossRefGoogle Scholar
  75. 75.
    Wu D, Sorg B, Adolf W, Seip EH, Hecker E (1992) Oligo- and macrocyclic diterpenes in Thymelaeaceae and Euphorbiaceae occurring and utilized in Yunnan (Southwest China). 2. Ingenane diterpene esters from Euphorbia nematocypha Hand.-Mazz. Phytother Res 6:237Google Scholar
  76. 76.
    Uemura D, Hirata Y (1973) Isolation and structures of irritant substances obtained from Euphorbia species (Euphorbiaceae). Tetrahedron Lett 11:881CrossRefGoogle Scholar
  77. 77.
    Upadhyay RR, Ansarin M, Zarintan MH, Shakui P (1976) Tumor promoting constituents of Euphorbia serrata L. latex. Experientia 32:1196CrossRefGoogle Scholar
  78. 78.
    Uemura D, Hirata Y (1971) The isolation and structure of two new alkaloids, milliamines A and B, obtained from Euphorbia millii (sic). Tetrahedron Lett 19:3673CrossRefGoogle Scholar
  79. 79.
    Marston A, Hecker E (1983) On the active principles of the Euphorbiaceae. VI. Isolation and biological activity of seven milliamines from Euphorbia milii. Planta Med 47:141Google Scholar
  80. 80.
    Brooks G, Evans AT, Markby DP, Harrison ME, Baldwin MA, Evans FJ (1990) An ingenane diterpene from Belizian Mabea excelsa. Phytochemistry 29:1615CrossRefGoogle Scholar
  81. 81.
    Teng R-W, McManus D, Aylward J, Ogbourne S, Armstrong D, Mau S-L, Johns J, Bacic A (2009) Biotransformation of ingenol-3-angelate in four plant cell suspension cultures. Biocatal Biotransformation 27:186CrossRefGoogle Scholar
  82. 82.
    Baloch IB, Baloch MK (2011) Isolation and characterization of ingenol esters from Euphorbia cornigera. Chin Chem Lett 22:451CrossRefGoogle Scholar
  83. 83.
    Uemura D, Ohwaki H, Hirata Y, Chen YP, Hsu HY (1974) Isolation and structure of 20-deoxyingenol. New diterpene, derivatives and ingenol derivative obtained from “Kansui”. Tetrahedron Lett 29:2527CrossRefGoogle Scholar
  84. 84.
    Hecker E (1977) New toxic, irritant and cocarcinogenic diterpene esters from Euphorbiaceae and Thymeleaeceae. Pure Appl Chem 49:1423–1431CrossRefGoogle Scholar
  85. 85.
    Markby DP, Brooks G, Evans AT, Evans FJ (1989) Checum (poison sap tree) toxin, a potent activator of protein kinase C. Lancet 1320Google Scholar
  86. 86.
    Deng B, Mu SZ, Zhang JX, Hao XJ (2010) New diterpenoids from the roots of Euphorbia eubracteolata Hayata. Nat Prod Res 24:1503CrossRefGoogle Scholar
  87. 87.
    Halaweish FT, Kronberg S, Hubert MB, Rice JA (2002) Toxic and aversive diterpenoids of Euphorbia esula. J Chem Ecol 28:1599CrossRefGoogle Scholar
  88. 88.
    Vasas A, Hohmann J (2014) Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev 114:8579CrossRefGoogle Scholar
  89. 89.
    Corea G, Di Pietro A, Dumontet C, Fattorusso E, Lanzotti V (2009) Jatrophane diterpenes from Euphorbia spp. as modulators of multidrug resistance in cancer therapy. Phytochem Rev 8:431CrossRefGoogle Scholar
  90. 90.
    Marsh N, Rothshild M, Evans FJ (1984) A new look at Lepidoptera toxins. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic, London, p 135Google Scholar
  91. 91.
    Hundsdoerfer AK, Tshibangu JN, Wetterauer B, Wink M (2005) Sequestration of phorbol esters by aposematic larvae of Hyles euphorbiae (Lepidoptera: Sphingidae). Chemoecology 15:261CrossRefGoogle Scholar
  92. 92.
    Appendino G, Tron GC, Cravotto G, Palmisano G, Annunziata R, Baj G, Surico N (1999) Synthesis of modified ingenol esters. Eur J Org Chem 12:3413–3420CrossRefGoogle Scholar
  93. 93.
    Zhang XY, Guo J, Cao Y, Shang E, Tang Y, Ding A, Duan J-A (2014) Processing of Kansui roots stir-baked with vinegar reduces Kansui-induced hepatocyte cytotoxicity by decreasing the contents of toxic terpenoids and regulating the cell apoptosis pathway. Molecules 19:7237CrossRefGoogle Scholar
  94. 94.
    Krenske EH, Williams CM (2015) Do anti-Bredt natural products exist? Olefin strain energy as a predictor of isolability. Angew Chem Int Ed Engl 54:10608CrossRefGoogle Scholar
  95. 95.
    Mak JYW, Pouwer RH, Williams CM (2014) Natural products with anti-Bredt and bridgehead double bonds. Angew Chem Int Ed Engl 53:13664CrossRefGoogle Scholar
  96. 96.
    Nguyen KA, Gordon MS, Wang G-t, Lambert JB (1991) Stabilization of β-positive charge by silicon, germanium, or tin. Organometallics 10:2798CrossRefGoogle Scholar
  97. 97.
    Uemura D, Hirata Y, Chen Y-P, Hsu H-Y (1975) 13-Oxingenol derivative, a new diterpene isolated from Euphorbia kansui. Tetrahedron Lett 1974:2529Google Scholar
  98. 98.
    Nickel A, Maruyama T, Tang H, Murphy PD, Greene B, Yusuff N, Wood JL (2004) Total synthesis of ingenol. J Am Chem Soc 126:16300CrossRefGoogle Scholar
  99. 99.
    Sorg B, Hecker E (1982) On the chemistry of ingenol. III. Synthesis of 3-deoxo-3-oxoingenol, some 5-esters and of ethers and acetals of ingenol. Z Naturforsch 37b:1640Google Scholar
  100. 100.
    Snatzke G (1961) Ueber die Oxydation mit CrO3 in Dimethyulformamid. Chem Ber 94:729CrossRefGoogle Scholar
  101. 101.
    Shibuya K (1994) A novel allylic oxidation using a combination of formic acid and selenium dioxide. Synth Commun 24:2923CrossRefGoogle Scholar
  102. 102.
    Liang X, Grue-Sørensen G, Månsson K, Vedsø P, Soor A, Stahlhut M, Bertelsen M, Engell KM, Högberg T (2013) Syntheses, biological evaluation and SAR of ingenol mebutate analogues for treatment of actinic keratosis and non-melanoma skin cancer. Bioorg Med Chem Lett 23:5624CrossRefGoogle Scholar
  103. 103.
    Uemura D, Hirata Y (1977) The isolation and structure of toxic principles, milliamines A, B, and C, from Euphorbia millii (sic). Bull Chem Soc Jpn 50:2005CrossRefGoogle Scholar
  104. 104.
    Uemura D, Hirata Y, Chen YP, Hsu HY (1974) New diterpene, 13-oxyingenol, derivative isolated from Euphorbia kansui Liou. Tetrahedron Lett 29:2529CrossRefGoogle Scholar
  105. 105.
    Lin LJ, Marshall GT, Kinghorn AD (1983) The dermatitis-producing constituents of Euphorbia hermentiana latex. J Nat Prod 46:723CrossRefGoogle Scholar
  106. 106.
    Liang X, Grue-Sørensen G, Petersen AK, Högberg T (2012) Semisynthesis of ingenol-3-angelate (PEP005): efficient stereoconservative angeloylation of alcohols. Synlett 23:2647CrossRefGoogle Scholar
  107. 107.
    Brown MB, Crothers MED (2007) Therapeutic compositions comprising ingenol-3-angelate. WO Patent Appl No 2007/068963 A3Google Scholar
  108. 108.
    Bundgaard H, Hansen J (1981) Studies on the stability of corticosteroids. VI. Kinetics of the rearrangement of betamethasone-17-valerate to the 21-valerate esters in aqueous solution. Int J Pharm 7:197CrossRefGoogle Scholar
  109. 109.
    Grue-Sørensen G, Liang X, Månsson K, Vedsø P, Dahl Sørensen M, Soor A, Stahlhut M, Bertelsen M, Engell KM, Högberg T (2014) Synthesis, biological evaluation and SAR of 3-benzoates of ingenol for treatment of actinic keratosis and non-melanoma skin cancer. Bioorg Med Chem Lett 24:54CrossRefGoogle Scholar
  110. 110.
    Kim S, Winkler JD (1997) Approaches to the synthesis of ingenol. Chem Soc Rev 26:387CrossRefGoogle Scholar
  111. 111.
    Kuwajima I, Tanino K (2005) Total synthesis of ingenol. Chem Rev 105:4661CrossRefGoogle Scholar
  112. 112.
    Cha JK, Epstein OL (2006) Synthetic approaches to ingenol. Tetrahedron 62:1329CrossRefGoogle Scholar
  113. 113.
    Watanabe K, Suzuki Y, Aoki K, Sakakura A, Suenaga K, Kigoshi H (2004) Formal synthesis of optically active ingenol via ring-closing olefin metathesis. J Org Chem 69:7802CrossRefGoogle Scholar
  114. 114.
    Tanino K, Onuki K, Asano K, Miyashita M, Nakamura T, Takahashi Y, Kuwajima I (2003) Total synthesis of ingenol. J Am Chem Soc 125:1499CrossRefGoogle Scholar
  115. 115.
    Ohyoshi T, Funakubo S, Miyazawa Y, Niida K, Hayakawa I, Kigoshi H (2012) Total synthesis of (–)-13-oxyingenol and its natural derivative. Angew Chem Int Ed Engl 124:5056CrossRefGoogle Scholar
  116. 116.
    Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75CrossRefGoogle Scholar
  117. 117.
    Appendino G (2014) Omnia Praeclara Rara. The quest for ingenol heats up. Angew Chem Int Ed 53:927Google Scholar
  118. 118.
    Marco-Contelles J, do Carmo Carreiras M, Rodríguez C, Villarroya M, García AG (2006) Synthesis and pharmacology of galantamine. Chem Rev 106:116CrossRefGoogle Scholar
  119. 119.
    Yu MJ, Zheng W, Seletsky BM (2013) From micrograms to grams: scale-up synthesis of eribulin mesylate. Nat Prod Rep 30:1158CrossRefGoogle Scholar
  120. 120.
    Newton AC (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101:2353CrossRefGoogle Scholar
  121. 121.
    Ron D, Kazanietz MG (1999) New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 13:1658Google Scholar
  122. 122.
    Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847Google Scholar
  123. 123.
    Hasler CM, Geza A, Blumberg PM (1992) Specific binding to protein kinase C by ingenol and its induction of biological responses. Cancer Res 52:202Google Scholar
  124. 124.
    Yeh E, Sharkey NA, Blumberg PM (1987) Influence of side chain on phorbol ester binding to protein kinase C. Phytother Res 1:135CrossRefGoogle Scholar
  125. 125.
    Kedei N, Dundberg DJ, Toth A, Welburn P, Garfield S, Blumberg PM (2004) Characterization of the interaction of ingenol-3-angelate with protein kinase C. Cancer Res 64:3243CrossRefGoogle Scholar
  126. 126.
    Pak Y, Enyedy IJ, Varady J, Kun JW, Lorenzo PS, Blumberg PM, Wang S (2001) Structural basis of binding of high-affinity ligands to protein kinase C: prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis. J Med Chem 44:1690CrossRefGoogle Scholar
  127. 127.
    Zhang GG, Kazanietz MG, Blumberg PM, Hurley JH (1995) Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell 81:917CrossRefGoogle Scholar
  128. 128.
    Pak Y, Wang S (1999) Folding of a 16-residue helical peptide using molecular dynamics simulation with Tsallis effective potential. J Chem Phys 111:4359CrossRefGoogle Scholar
  129. 129.
    Krauter G, von der Liet CW, Schmidt R, Hecker E (1996) Structure/activity relationships of polyfunctional diterpenes of the tigliane type. Eur J Biochem 242:417CrossRefGoogle Scholar
  130. 130.
    Kishi Y, Rando RR (1998) Structural basis of protein kinase C activation by tumor promoters. Acc Chem Res 31:163CrossRefGoogle Scholar
  131. 131.
    Kazanietz MG, Caloca MJ, Eroles P, Fujii T, Garcia-Bermejo ML, Reilly M, Wang H (2000) Pharmacology of the receptors for the phorbol esters tumor promoters. Biochem Pharmacol 60:1417CrossRefGoogle Scholar
  132. 132.
    Sodeoka M, Uotsu K, Shibasaki M (1995) Photoaffinity labelling of PKC with a phorbol derivative: importance of the 13-acyl group in phorbol ester-PKC interactions. Tetrahedron Lett 36:879599CrossRefGoogle Scholar
  133. 133.
    Jin Y, Yeh CH, Kuttruff CA, Jørgensen L, Dünstl G, Felding J, Natarajan SR, Baran PS (2015) C-H oxidation of ingenanes enables potent and selective protein kinase C isoform activation. Angew Chem Int Ed 54:14044CrossRefGoogle Scholar
  134. 134.
    Racke FK, Baird M, Barth RF, Huo T, Yang W, Gupta N, Weldon M, Rutledge H (2012) Unique in vitro and in vivo thrombopoietic activities of ingenol 3,20-dibenzoate, a Ca++-independent protein kinase C isoform agonist. PLoS One 7:e51059CrossRefGoogle Scholar
  135. 135.
    Yoshida C, Hishiyama K, Miyazaki K, Watanabe M, Kanbe M, Yamada Y, Matsuzaki K, Miyashita K, Kitanaka S, Miyata S (2010) Analysis of inhibition of topoisomerase II-alpha and cancer cell proliferation by ingenol EZ. Cancer Sci 101:374CrossRefGoogle Scholar
  136. 136.
    Fukuda Y, Kanbe M, Watanabe M, Dan K, Matsuzaki K, Kitanaka S, Miyata S (2013) 3EZ,20Ac-Ingenol, a catalytic inhibitor of topoisomerases, downregulates p-Akt and induces DSBs and apoptosis of DT40 cells. Arch Pharm Res 36:1029CrossRefGoogle Scholar
  137. 137.
    Miyata S, Fukuda Y, Tojima H, Matsuzaki K, Kitanaka S, Sawada H (2015) Mechanism of the inhibition of leukemia cell growth and induction of apoptosis through the activation of ATR and PTEN by the topoisomerase inhibitor 3EZ, 20Ac-ingenol. Leuk Res 15:30331Google Scholar
  138. 138.
    Oh JG, Chin YW, Kim SJ, Choi JM, Kim SK, Kang HE, Heo TH (2015) Biphasic effects of ingenol 3,20-dibenzoate on the erythropoietin receptor: synergism at low doses and antagonism at high doses. Mol Pharmacol 88:392CrossRefGoogle Scholar
  139. 139.
    Khaleghian A, Riazi GH, Ghafari M, Rezaie M, Takahashi A, Nakaya Y, Nazari H (2010) Effect of inganen (sic) anticancer properties on microtubule organization. Pak J Pharm Sci 23:273Google Scholar
  140. 140.
    Selmer J, Knudsen KM (2015) A method for topically treating actinic keratosis with ingenol 3-(3,5-diethylisoxazole-4-carboxylate). WO Patent Appl No 2015059572Google Scholar
  141. 141.
    Sinnya S, Tan JM, Prow TW, Primiero C, McEniery E, Selmer J, Østerdal ML, Soyer HP (2016) A randomized, phase IIa exploratory trial to assess the safety and preliminary efficacy of LEO 43204 in patients with actinic keratosis. Br J Dermatol doi 174:305CrossRefGoogle Scholar
  142. 142.
    Clinical Trials.Gov. A study of increasing strengths, safety and efficacy of two formulas of LEO 43204 on the face or the chest in patients with actinic keratosis.
  143. 143.
    Berenblum I (1941) The co-carcinogenic action of Croton resin. Cancer Res 1:44Google Scholar
  144. 144.
    Furstenberger G, Berry DL, Bertsch S, Sorg B, Marks F (1981) Skin tumor promotion by phorbol esters is a two-stage process. Proc Natl Acad Sci USA 78:7722CrossRefGoogle Scholar
  145. 145.
    Kupchan SM, Uchida I, Braufman AR, Dailey RG, Fei BY (1976) Antileukemic principles isolated from Euphorbiaceous plants. Science 191:571CrossRefGoogle Scholar
  146. 146.
    Itokawa H, Ichihara Y, Watanabe K, Takeya K (1989) An antitumor principle from Euphorbia lathyris. Planta Med 55:271CrossRefGoogle Scholar
  147. 147.
    Lee W-Y, Hampson P, Coulthard L, Ali F, Salmon M, Lord JM, Scheel-Toellner D (2010) Novel antileukemic compound ingenol 3-angelate inhibits T cell apoptosis by activating protein kinase C theta. J Biol Chem 285:23889CrossRefGoogle Scholar
  148. 148.
    Song X, Lopez-Campistrous A, Sun L, Dower NA, Kedei N, Yang J, Kelsey JS, Lewin NE, Esch TE, Blumberg PM, Stone JC (2013) GRPs are targets of the anti-cancer agent ingenol-3-angelate. PLoS One 8:e72331CrossRefGoogle Scholar
  149. 149.
    Mason SA, Cozzi SJ, Pierce CJ, Pavey SJ, Parsons PG, Boyle GM (2010) The induction of senescence-like growth arrest by protein kinase C-activating diterpene esters in solid tumor cells. Invest New Drugs 28:575CrossRefGoogle Scholar
  150. 150.
    Blanco-Molina M, Tron GC, Macho A, Lucena C, Calzado MA, Muñoz E, Appendino G (2001) Ingenol esters induce apoptosis in Jurkat cells through an AP-1 and NF-KappaB independent pathway. Chem Biol 8:767CrossRefGoogle Scholar
  151. 151.
    Fujiwara M, Ijichi K, Katsuura K, Shigeta S, Konno K, Wang GY, Uemura D, Yokota T, Baba M (1996) Mechanism of selective inhibition of human immunodeficiency virus by ingenol triacetate. Antimicrob Agents Chemother 40:271Google Scholar
  152. 152.
    Fujiwara M, Ijichi K, Tokuhisa K, Katsuura K, Wang G-YS, Uemura D, Shigeta S, Konno K, Yokota T, Baba M (1997) Ingenol derivatives are highly potent and selective inhibitors of HIV replication in vitro. Antivir Chem Chemother 7:230CrossRefGoogle Scholar
  153. 153.
    Fujiwara M, Okamoto M, Ijichi K, Tokuhisa K, Anasaki Y, Katsuura K, Uemura D, Shigeta S, Konno K, Yokota T (1998) Upregulation of HIV-1 replication in chronically infected cells by ingenol derivatives. Arch Virol 143:2003CrossRefGoogle Scholar
  154. 154.
    Proveda E (2014) Ingenol derivatives promising for HIV eradication. AIDS Rev 16:246Google Scholar
  155. 155.
    Jiang G, Mendes EA, Kaiser P, Wong DP, Tang Y, Cai I, Fenton A, Melcher GP, Hildreth JE, Thompson GR, Wong JK, Dandekar S (2015) Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-κB signaling in combination with JQ1 induced p-TEFb activation. PLoS Pathog 11:e1005066CrossRefGoogle Scholar
  156. 156.
    Spivak AM, Bosque A, Balch AH, Smyth D, Martins L, Planelles V (2015) Ex vivo bioactivity and HIV-1 latency reversal by ingenol dibenzoate and panobinostat in resting CD4+ T cells from aviremic patients. Antimicrob Agents Chemother 59:5984CrossRefGoogle Scholar
  157. 157.
    Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F, Ait-Ammar A, Delacourt N, Melard A, Kabeya K, Vanhulle C, Van Driessche B, Gatot JS, Cherrier T, Pianowski LF, Gama L, Schwartz C, Vila J, Burny A, Clumeck N, Moutschen M, De Wit S, Peterlin BM, Rouzioux C, Rohr O, Van Lint C (2015) An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1 + JQ1 and ingenol-B + JQ1 to potently reactivate viral gene expression. PLoS Pathog 11:e1005063CrossRefGoogle Scholar
  158. 158.
    Nothias-Scaglia LF, Pannecouque C, Renucci F, Delang L, Neyts J, Roussi F, Costa J, Leyssen P, Litaudon M, Paolini J (2015) Antiviral activity of diterpene esters on Chikungunya virus and HIV replication. J Nat Prod 78:1277CrossRefGoogle Scholar
  159. 159.
    Nothias-Scaglia L-F, Dumontet V, Neyts J, Roussi F, Costa J, Leyssen P, Litaudon M, Paolini J (2015) LC-MS2-Based dereplication of Euphorbia extracts with anti-Chikungunya virus activity. Fitoterapia 105:202CrossRefGoogle Scholar
  160. 160.
    Baloch LB, Baloch MK, Baloch AK (2009) Bio-active compounds from Euphorbia cornigera Boiss. Eur J Med Chem 44:3188CrossRefGoogle Scholar
  161. 161.
    Nascimento BA, Zani CL (1999) A simple high pressure liquid chromatographic method for the quantitative determination of the molluscicide milliamine L in the latex of Euphorbia splendens. Phytochem Anal 10:93CrossRefGoogle Scholar
  162. 162.
    Zani CL, Marston A, Hamburger M, Hostettmann K (1993) Molluscicidal milliamines from Euphorbia milii var. hislopii. Phytochemistry 34:89CrossRefGoogle Scholar
  163. 163.
    Shi JX, Li ZX, Nitoda T, Izumi M, Kanzaki H, Baba N, Kawazu K, Nakajima S (2007) Three antinematodal diterpenes from Euphorbia kansui. Biosci Biotechnol Biochem 71:1086CrossRefGoogle Scholar
  164. 164.
    Ogbourne SM, Parson PG (2014) The value of Nature’s natural product library for the discovery of new chemical entities: the discovery of ingenol mebutate. Fitoterapia 98:36CrossRefGoogle Scholar
  165. 165.
    Staples MP, Elwood M, Burton RC, Williams JL, Marks R, Giles GG (2006) Non-melanoma skin cancer in Australia: the 2002 National Survey and trends since 1985. Med J Aust 184:6Google Scholar
  166. 166.
    Ramsay JR, Suhrbier A, Aylward JH, Ogbourne SM, Cozzi S-J, Poulsen MGG (2011) The sap from Euphorbia peplus is effective against human nonmelanoma skin cancers. Br J Dermatol 164:633Google Scholar
  167. 167.
    Aylward JH (2001) Therapeutic agents-1. PCT Patent Appl No AU2001/000679Google Scholar
  168. 168.
  169. 169.
    Center Watch for Information on FDA-Approved Drugs (2015) Accessed 11 Aug 2015
  170. 170.
  171. 171.
    Rosen RH, Gupta AK, Tyring SK (2012) Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol 66:486CrossRefGoogle Scholar
  172. 172.
    Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, Bunce CM, Lord JM (2005) PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood 106:1362CrossRefGoogle Scholar
  173. 173.
    Berman B (2015) Safety and tolerability of ingenol mebutate in the treatment of actinic keratosis. Expert Opin Drug Saf 14:1969CrossRefGoogle Scholar
  174. 174.
    Dodson JM, DeSpain J, Hewett JE, Clark DP (1991) Malignant potential of actinic keratoses and the controversy over treatment. Arch Dermatol 127:1029CrossRefGoogle Scholar
  175. 175.
    Augustin M, Tu JH, Knudsen KM, Erntoft S, Larsson T, Hanke CW (2015) Ingenol mebutate gel for actinic keratosis: the link between quality of life, treatment satisfaction, and clinical outcomes. J Am Acad Dermatol 72:816CrossRefGoogle Scholar
  176. 176.
    Lebwohl MG, Shumack S, Stein Gold L, Melgaard A, Larsson T, Tyring SK (2013) Long-term follow-up study of ingenol mebutate gel for the treatment of actinic keratoses. JAMA Dermatol 149:666CrossRefGoogle Scholar
  177. 177.
    Schopf RE (2015) Ingenol mebutate gel is effective against anogenital warts — a case series in 17 patients. J Eur Acad Dermatol Venereol. doi: 10.1111/jdv.13097 Google Scholar
  178. 178.
    Fürstenberger G, Hecker E (1986) On the active principles of the Euphorbiaceae XII. Highly unsaturated irritant diterpene esters from Euphorbia tirucalli originating from Madagascar. J Nat Prod 49:386CrossRefGoogle Scholar
  179. 179.
    Tremp GL, Hecker E (1985) Stability of the “second stage” promoter 12-O-retinoylphorbol-13-acetate. Cancer Res 45:2390Google Scholar
  180. 180.
    Turner R (1995) Euphorbias. A gardener’s guide. BT Batsford, LondonGoogle Scholar
  181. 181.
    Colorado State University. Accessed 10 Aug 2015
  182. 182.
    Kronberg SL, Halaweish FT, Hubert MB, Weimer PJ (2006) Interactions between Euphorbia esula toxins and bovine ruminal microbes. J Chem Ecol 32:15CrossRefGoogle Scholar
  183. 183.
    Zayed SM, Farghaly M, Soliman SM, Gotta H, Sorg B, Hecker E (2001) Dietary cancer risk from conditional cancerogens (tumor promoters) in produce of livestock fed on species of spurge (Euphorbiaceae). V. Skin irritant and tumor-promoting diterpene ester toxins of the tigliane and ingenane type in the herbs Euphorbia nubica and Euphorbia helioscopia contaminating fodder of livestock. J Cancer Res Clin Oncol 127:40Google Scholar
  184. 184.
    Nawito M, Ahmed YF, Shalaby SI, Nada A, Zayed SM, Hecker E (2001) Dietary cancer risk from conditional cancerogens (tumor promoters) in products of livestock fed on species of spurge (Euphorbiaceae). IV. Toxicologic and pathophysiologic observations in lactating goats and their suckling kids fed on the irritant herbs Euphorbia nubica and Euphorbia helioscopia: an etiologic model for investigations on the putative risk of cancer by consumption of food. J Cancer Res Clin Oncol 127:34Google Scholar
  185. 185.
    Forsyth AA (1968) British poisonous plants. Ministry of Agriculture, Fisheries, and Food, Bulletin 161. HMSO, LondonGoogle Scholar
  186. 186.
    Zayed SM, Farghaly M, Taha H, Gminski R, Hecker E (1998) Milk of lactating goats fed on the skin irritant herb Euphorbia peplus is polluted by tumor promoters of the ingenane diterpene ester type. J Cancer Res Clin Oncol 124:301CrossRefGoogle Scholar
  187. 187.
    Upadhyay RR, Bakhtavar F, Ghaisarzadeh M, Tilabri J (1978) Cocarcinogenic and irritant factors of Euphorbia esula L. latex. Tumori 64:99Google Scholar
  188. 188.
    Nawito M, Ahmed YF, Zayed SM, Hecker E (1998) Dietary cancer risk from conditional cancerogens in produce of livestock fed on species of spurge (Euphorbiaceae). II. Pathophysiological investigations in lactating goats fed on the skin irritant herb Euphorbia peplus and in their milk-raised kids. J Cancer Res Clin Oncol 124:179Google Scholar
  189. 189.
    Makkar HPS, Becker K (2010) Are Jatropha curcas phorbol esters degraded by rumen microbes? J Sci Food Agric 90:1562CrossRefGoogle Scholar
  190. 190.
    van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, Schinkel AH (2007) Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (Vitamin B2) into milk. Mol Cell Biol 27:1247CrossRefGoogle Scholar
  191. 191.
    Upadhyay RR, Islampanah S, Davoodi A (1980) Presence of a tumor-promoting factor in honey. Gann 71:557Google Scholar
  192. 192.
    Sosath S, Ott HH, Hecker E. (1988) Irritant principles of the spurge family (Euphorbiaceae) XIII. Oligocyclic and macrocyclic diterpene esters from latices of some Euphorbia species utilized as source plants of honey. J Nat Prod 51:1062Google Scholar
  193. 193.
    Prota: Medicinal plants/Plantes médicinales. Accessed 10 Aug 2015
  194. 194.
    Quoted in Ref. 120Google Scholar
  195. 195.
    Liang A (1995) A review of the processing of Euphorbia kansui Liou. Zhongguo Zhong Yao Zhi 20:3Google Scholar
  196. 196.
    Girin MA, Paphassarang S, David-Eteve C, Chaboud A, Raynaud J (1993) Determination of ingenol in homeopathic tinctures of Euphorbia species by high-performance liquid chromatography. J Chromatogr 637:206CrossRefGoogle Scholar
  197. 197.
    Branch SK, Rowan MG (1992) Concerted use of homo- and heteronuclear 2D NMR in the elucidation of the structure of a novel pentaester of 19-hydroxyingol from Euphorbia marginata. Magn Reson Chem 30:632CrossRefGoogle Scholar
  198. 198.
    INCHEM: Chemical safety information from intergovernmental organizations: Strychnine. Accessed 14 Oct
  199. 199.
    Jakupovic J, Jeske F, Morgenstern T, Tsichritzis F, Marco JA, Berendohn W (1998) Diterpene from Euphorbia segetalis. Phytochemistry 47:1583CrossRefGoogle Scholar
  200. 200.
    Betancur-Galvis L, Roldan J, Morales G, Sierra J, Blanco-Molina M, Macho A, Marco JA (2002) Ingenols isolated from Euphorbia cotinifolia induce apoptosis in Jurkat cells. Rev Latinoam Quim 30:68Google Scholar
  201. 201.
    Cao D, Su Y, Yang J (1992) Chemical constituents of Dalangdu (Euphorbia nematocypha). II. Isolation and identification of the aromatic compounds and diterpenoid. Zhongcaoyao 23:625Google Scholar
  202. 202.
    Mbwambo ZH, Lee SK, Mshiu EN, Pezzuto JM, Kinghorn AD (1996) Constituents from the stem wood of Euphorbia quinquecostata with phorbol dibutyrate receptor-binding inhibitory activity. J Nat Prod 59:1051CrossRefGoogle Scholar
  203. 203.
    Jia Z, Ding Y (1991) New diterpene from Euphorbia sieboldiana. Planta Med 57:569CrossRefGoogle Scholar
  204. 204.
    Sevil O, Ulubelen A, Barla A, Kohlbau H-J, Voelter W (1999) Triterpenoids and a diterpene from Euphorbia iberica. Planta Med 65:475CrossRefGoogle Scholar
  205. 205.
    Hirota M, Ohigashi H, Oki Y, Koshimizu K (1980) New ingenol-esters as piscicidal constituents from Euphorbia cotinifolia L. Agric Biol Chem 44:1351CrossRefGoogle Scholar
  206. 206.
    Tada M, Seki H (1989) Toxic diterpenes from Euphorbia trigona. Agric Biol Chem 53:425Google Scholar
  207. 207.
    Wang Y-B, Li Y-Y, Wang H-B, Qin G-W (2007) Chemical constituents from the roots of Euphorbia kansui. Zhongguo Tianran Yaowu 5:182Google Scholar
  208. 208.
    Falsone G, Crea AE, Noack EA (1982) Constituents of Euphorbiaceae. VII. 20-Deoxyingenol monoesters and ingenol diesters from Euphorbia biglandulosa Desf. Arkiv Pharm 315:1026Google Scholar
  209. 209.
    Vogg G, Mattes E, Rothenburger J, Hertkorn N, Achatz S, Sandermann H Jr (1999) Tumor promoting diterpenes from Euphorbia leuconeura L. Phytochemistry 51:289CrossRefGoogle Scholar
  210. 210.
    Marco JA, Sanz-Cervera JF, Ropero FJ, Checa J, Fraga BM (1998) Ingenane and lathyrane diterpenes from the latex of Euphorbia acrurensis. Phytochemistry 49:1095CrossRefGoogle Scholar
  211. 211.
    Shi JS, Li ZX, Nitoda T, Minoru I, Hiroshi K, Naomichi B, Kazuyoshi K, Shuhei N (2008) Antinematodal activities of ingenane diterpenes from Euphorbia kansui and their derivatives against the pine wood nematode. Z Naturforsh C Biosci 23:59Google Scholar
  212. 212.
    Lu Z-H, Yang M, Zhang J-Q, Chen G-T, Huang H-L, Guan S-H, Ma C, Liu X, Guo D-A (2008) Ingenane diterpenoids from Euphorbia esula. Phytochemistry 69:812CrossRefGoogle Scholar
  213. 213.
    Ott HH, Hecker E (1981) Highly irritant ingenane type diterpene esters from Euphorbia cyparissias L. Experientia 37:88CrossRefGoogle Scholar
  214. 214.
    Pan Q, Min ZD (2003) Studies on ingenol-type diterpene esters in root tuber of Euphorbia kansui. Chin Trad Herb Drugs 34:489Google Scholar
  215. 215.
    Lin LJ, Kinghorn AD (1983) Three new ingenane derivatives from the latex of Euphorbia canariensis L. J Agric Food Chem 31:396CrossRefGoogle Scholar
  216. 216.
    Baloch IB, Baloch MK, Us Saqib QN (2005) Tumor promoting diterpene esters from latex of Euphorbia caducifolia L. Helv Chim Acta 88:3145CrossRefGoogle Scholar
  217. 217.
    Connolly JD, Facunle CO, Rycroft DS (1984) Five ingol esters and a 17-hydroxyingenol ester from the latex of Euphorbia kamerunica. Assignment of esters using 13C-NMR methods. Tetrahedron Lett 25:3773CrossRefGoogle Scholar
  218. 218.
    Zarei SM, Ayatollahi AM, Ghanadian M, Kobarfard F, Aghaei M, Choudhary MI, Fallahian F (2013) Unusual ingenoids from Euphorbia erythradenia Boiss. with pro-apoptotic effects. Fitoterapia 91:87CrossRefGoogle Scholar
  219. 219.
    Pan DJ, Hu CQ, Chang JJ, Lee TTY, Chen YP, Hsu HY, McPhail DR, McPhail AT, Lee KH (1991) Kansuiphorin-C and -D, cytotoxic diterpenes from Euphorbia kansui. Phytochemistry 30:1018CrossRefGoogle Scholar
  220. 220.
    Gotta H, Adolf W, Opferkuch HJ, Hecker E (1984) On the active principles of the Euphorbiaceae, IXa. Ingenane type diterpene esters from five Euphorbia species. Z Naturforsch B 39B:683Google Scholar
  221. 221.
    Zhao J-X, Liu C-P, Qi W-Y, Han M-L, Han Y-S, Wainberg MA, Yue J-M (2014) Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J Nat Prod 77:2224CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze del FarmacoNovaraItaly

Personalised recommendations