Skip to main content

Neutron Resonance Imaging

  • Chapter
  • First Online:
Neutron Methods for Archaeology and Cultural Heritage

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

Neutron Imaging using epithermal neutron beams is a technique that is not yet widely exploited. However, it offers an interesting potential allowing for joining the advantages of imaging (i.e. space-resolved information) along with element sensitivity (at least for most medium-weight elements). In the following pages, the development of Neutron Resonance Transmission Imaging (NRTI) is presented. In recent years it has been developed by two separated groups making use of the characteristics of pulsed sources optimized for Time-of-Flight measurements. An application to a cultural heritage object at the ISIS facility is presented as an example in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A noteworthy exception is indeed the system used by Schrack et al. with the use of a 1-D position-sensitive He3 detector coupled with a slit collimator parallel to the Helium tube. With this configuration, space resolution was given by the sensitive detector in one direction and the aperture of the slit in the perpendicular one (Schrack et al. 1983).

References

  • Bedogni R et al (2009) Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer. Nucl Instr Meth A 612:143

    Google Scholar 

  • Brandis M et al (2012) Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector. J Instrum 7:C04003

    Google Scholar 

  • Chen G, Lanza RC (2002) Fast neutron resonance radiography for elemental imaging: theory and applications. IEEE Trans Nucl Sci 49:1919

    Google Scholar 

  • Ene D et al (2010) Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations. Nucl Instr Meth A 618:54

    Google Scholar 

  • Festa G et al (2015) Nuclear resonance transmission imaging for 3D elemental mapping at the ISIS spallation neutron source. J Anal At Spectrom 30:745

    Google Scholar 

  • Fraser GW Pearson JF (1990) The direct detection of thermal-neutrons by imaging microchannel-plate detectors. Nucl Instr Meth A 293:569

    Google Scholar 

  • Furrer A, Mesot J, Straessle T (2009) Neutron scattering in condensed matter physics. World Scientific, London

    Google Scholar 

  • Gorini G et al (2007) Ancient charm: a research project for neutron-based investigation of cultural-heritage objects. Il Nuovo Cimento C 47(30). See also http://ancient-charm.neutron-eu.net

  • Imberti S, Kockelmann W, Celli M et al (2008) Neutron diffractometer INES for quantitative phase analysis of archaeological objects. Meas Sci Technol 19:034003

    Google Scholar 

  • Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, Piscataway, USA

    Google Scholar 

  • Kopecky S et al (2009) The total cross section and resonance parameters for the 0.178 eV resonance of Cd-113. Nucl Instrum Meth B 267:2345

    Google Scholar 

  • Llopart X, Ballabriga R, Campbell M, Tlustos L, Wong W (2007) Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Meth A 581:485 details of the Timepix device can be found in webpage: http://medipix.web.cern.ch/medipix/pages/medipix2/timepix.php

  • Lovesey SW (1987) Theory of neutron scattering from condensed matter. Clarendon Press, Oxford

    Google Scholar 

  • Maekawa F et al (2009) NOBORU: J-PARC BL10 for facility diagnostics and its possible extension to innovative instruments. Nucl Instr Meth A 600:335

    Google Scholar 

  • Martz HE et al (2009) X-ray Imaging. CRC Press Inc, Bosa Roca

    Google Scholar 

  • Mayers J, Reiter G (2012) The VESUVIO electron volt neutron spectrometer. Meas Sci Technol 23:045902

    Google Scholar 

  • Mondelaers W, Schillebeeckx P (2006) GELINA, a neutron time-of-flight facility for high-resolution neutron data measurements, Notiziario Neutroni e Luce di Sincrotrone 11:19

    Google Scholar 

  • Mor I et al (2013) Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION). J Instrum 8:P11012

    Google Scholar 

  • Moxon M (1989) REFIT2: a least squares fitting program for resonance analysis in neutron transmission and capture data, NEA—0914/02

    Google Scholar 

  • Mughabghab S (2006) Atlas of neutron resonances. Elsevier, Netherlands

    Google Scholar 

  • Perelli Cippo E et al (2008) Simulations and design of detectors for imaging with epithermal neutrons, Meas Sci Technol 19:034027

    Google Scholar 

  • Perelli Cippo E et al (2011) Imaging of cultural heritage objects using neutron resonances. J Anal At Spectrom 26:992

    Google Scholar 

  • Priesmeyer HG, Harz U (1975) Isotopic content determination in irradiated fuel by neutron transmission analysis. Atomkernenergie 25:109

    Google Scholar 

  • Reich CW, Moore MS (1958) Multilevel formula for the fission process. Phys Rev 111:929

    Google Scholar 

  • Schillebeeckx P et al (2012) Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data. Nucl Data Sheets 113:3054

    Google Scholar 

  • Schillebeeckx P et al (2014) Neutron resonance Spectroscopy for the characterisation of materials and objects. JRC Science and Policy Reports. European Commission, Joint Research Centre Institute for Reference Materials and Methods, Report EUR 26848-EN

    Google Scholar 

  • Schooneveld EM et al (2009) A new position-sensitive transmission detector for epithermal neutron imaging. J Phys D Appl Phys 42:152003

    Google Scholar 

  • Schrack RH et al (1983) Neutron radiography In Burton JP, van der Hardt P (ed) Springer, Netherlands, pp 495–502

    Google Scholar 

  • Schulze R et al (2013) The ANCIENT CHARM project at FRM II: three dimensional elemental mapping by prompt gamma activation imaging and neutron tomography. J Anal At Spectrom 28:1508

    Google Scholar 

  • Shannon C (1998) Proceedings of the IRE 37:10–21 (1949). Reprinted in Proceedings of the IEEE 86:447

    Google Scholar 

  • Sowerby BD, Tickner JR (2007) Recent advances in fast neutron radiography for cargo inspection. Nucl Instr Meth A 580:799

    Google Scholar 

  • Steuwer A et al (2005) Using pulsed neutron transmission for crystalline phase imaging and analysis. J Appl Phys 97:074903–074911

    Google Scholar 

  • Syme DB (1982) The black and white filter method for background determination in neutron time-of-flight spectrometry. Nucl Instrum Meth 198:357

    Google Scholar 

  • Tomita H et al (2012) Development of epithermal neutron camera based on resonance-energy-filtered imaging with GEM. J Instrum 7:C05010

    Google Scholar 

  • Tremsin AS, Feller WB, Downing RG (2005) Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. 1. Square channels with B-10 doping. Nucl Instrum Meth A 539:278

    Google Scholar 

  • Tremsin AS et al (2012) High resolution neutron resonance absorption imaging at a pulsed neutron beamline. IEEE Trans Nucl Sci 59:3272

    Google Scholar 

  • Tremsin AS et al (2014) Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source. Nucl Instr Meth A 746:47

    Google Scholar 

  • Vallerga J et al (2009) The current and future capabilities of MCP based UV detectors. Astrophys Space Sci 320:247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Perelli Cippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorini, G., Schooneveld, E., Perelli Cippo, E., Di Martino, D. (2017). Neutron Resonance Imaging. In: Kardjilov, N., Festa, G. (eds) Neutron Methods for Archaeology and Cultural Heritage. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-33163-8_13

Download citation

Publish with us

Policies and ethics