Skip to main content

Neutron Resonance Analysis

  • Chapter
  • First Online:
Neutron Methods for Archaeology and Cultural Heritage

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

The presence of resonance structures in neutron induced reaction cross sections is the basis of Neutron Resonance Transmission Analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA). NRTA and NRCA are powerful non-destructive methods for determining the elemental and isotopic composition of materials and objects. Both methods are non-invasive and do not require any sample preparation. They mostly result in a negligible induced radioactivity of the objects. This is due to the relatively high detection efficiency and the neutron energy spectrum that is needed. The energy positions of the resonance profiles provide qualitative information about the composition, while the contents of the observed resonance peaks in a capture spectrum or the dips in a neutron transmission spectrum give quantitative information about the bulk composition. In this contribution the basic principles of NRTA and NRCA are discussed and a review of applications is given, with an emphasis on studies of archaeological objects and artefacts by NRCA at the time-of-flight facility GELINA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To make copper alloys with large amounts of zinc (brass) requires special techniques. The problem is that zinc with a boiling temperature of 907 °C evaporates and disappears from the furnace before copper melts. In the cementation method copper fragments mixed with zinc oxide (or carbonate) and charcoal are heated in a closed crucible to a high temperature, but such that copper does not melt. In this process zinc oxide is reduced, it is vaporized and thereafter slowly absorbed by the solid copper in the closed crucible. The largest amount of zinc in copper in this process that could be obtained in the process by the Romans and during most of the Middle Ages was about 28 wt%.

References

  • Becker B, Bastian C, Emiliani F, Gunsing F, Heyse J, Kauwenberghs K, Kopecky S, Lampoudis C, Massimi C, Otuk N, Schillebeeckx P, Sirakov I (2012) Data reduction and uncertainty propagation of time-of-flight spectra with AGS. J Instrum 7:P11002–P11021

    Google Scholar 

  • Becker B, Harada H, Kauwenberghs K, Kitatani F, Koizumi M, Kopecky S, Moens A, Schillebeeckx P, Sibbens G, Tsuchiya H (2013a) Particle size inhomogeneity effect on neutron resonance densitometry. ESARDA Bulletin 50:2–8

    Google Scholar 

  • Becker B, Kauwenberghs K, Kopecky S, Harada H, Moxon M, Schillebeeckx P (2013b) Implementation of an analytical model accounting for sample inhomogeneities in REFIT. JRC Scientific and Policy Reports, JRC 86936, ISBN 978-92-79-35095-5

    Google Scholar 

  • Becker B, Kopecky S, Harada H, Schillebeeckx P (2014) Measurement of the direct particle transport through stochastic media using neutron resonance transmission analysis. Eur Phys J Plus 129:58–59

    Article  Google Scholar 

  • Becker B, Kopecky S, Schillebeeckx P (2015) On the methodology to calculate the covariance of estimated resonance parameters. Nucl Data Sheets 123:171–177

    Article  Google Scholar 

  • Bethe HA, Placzek G (1937) Resonance effects in nuclear processes. Phys Rev 51:450–484

    Article  Google Scholar 

  • Böckhoff KH, Carlson AD, Wasson OA, Harvey JA, Larson DC (1990) Electron linear accelerators for fast neutron data measurements in support of fusion energy applications. Nucl Sci Eng 192–207

    Google Scholar 

  • Borella A, Volev K, Brusegan A, Schillebeeckx P, Corvi F, Koyumdjieva N, Janeva N, Lukyanov AA (2006) Determination of the Th-232(n, gamma) cross section from 4 to 140 keV at GELINA. Nucl Sci Eng 152(1):1–14

    Google Scholar 

  • Breit G, Wigner EP (1936) Capture of Slow Neutrons. Phys Rev 49:519–531

    Article  Google Scholar 

  • Butler JJ, Steegstra H (2002) Bronze age metal and amber in the Netherlands (III:2). Catalogue of the socketed axes, Part B. Palaeolohistoria 43/44:263–319

    Google Scholar 

  • Chiaveri E et al (2014) The CERN n_TOF facility: neutron beams performances for cross section measurements. Nucl Data Sheets 119:1–4

    Article  Google Scholar 

  • Craddock PT (1977) The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations. J Archaeol Sci 5:1–16

    Google Scholar 

  • Craddock PT (1985) The metallurgy of Italic and Sardinian bronzes. In: J Swaddling (ed) Italian iron age artefacts in the British museum. British Museum, London, pp 143–150

    Google Scholar 

  • Craddock PT (1986) The metallurgy and composition of Etruscan bronze. Studi Etruschi 52:211–271

    Google Scholar 

  • Ene D, Borcea C, Flaska M, Kopecky S, Negret A, Mondelaers W, Plompen AJM (2010) Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations. Nucl Instr Meth Phys Res A 618:54–68

    Article  Google Scholar 

  • Fontijn DR (2003) Sacrified landscapes, cultural biographies of persons, objects and natural places in the Bronze Age of the southern Netherlands, c. 2300-600 BC. Ph.D thesis. University of Leiden

    Google Scholar 

  • Fröhner FH (2000) Evaluation and analysis of nuclear resonance data, JEFF report 18, Nuclear Energy Agency, (OECD)

    Google Scholar 

  • Gorini G, Ancient Charm collaboration (2007) Ancient charm: a research project for neutron-based investigation of cultural-heritage objects. Il Nuovo Cimento C 30, 47 – 58

    Google Scholar 

  • Groenewold HJ, Groendijk H (1947) Non-thermal neutron cascade. Physica XIII:141–152

    Google Scholar 

  • Harada M, Watanabe N, Teshigawara M, Kai T, Kato T, Ikeda Y (2007) Neutronics of a poisoned para-hydrogen moderator for a pulsed spallation neutron source. Nucl Instr Meth Phys Res A 574:407–419

    Article  Google Scholar 

  • Harada H, Kimura A, Kitatani F, Koizumi M, Tsuchiya H, Becker B, Kopecky S, Schillebeeckx P (2014) Generalized analysis method for neutron resonance transmission analysis. J Nucl Sci Technol. doi:10.1080/00223131.2014.982738

    Google Scholar 

  • Hasemi H, Harada M, Kai T, Shinohara T, Ooi M, Sato H, Kino K, Segawa M, Kamiyama T, Kiyanagi Y (2015) Evaluation of nuclide density by neutron transmission at the NOBORU instrument in J-PARC/MLF. Nucl Instr Meth Phys Res A 773:137–149

    Article  Google Scholar 

  • Hecker NE, Mook HA, Harvey JA, Hill NW, Moxon M, Golovchenko JA (1994) Absence of anomalous vibrations in YBa2Cu3O7−δ. Phys Rev B 50:16129–16132

    Article  Google Scholar 

  • Ikeda Y (2009) J-PARC status update. Nucl Instr Meth Phys Res A 600:1–4

    Article  Google Scholar 

  • Ingelbrecht C, Adriaens A, Maier EA (2001) The certification of arsenic, lead, tin and zinc (mass fractions) in five copper alloys—BCR-91. European Commission, Report EUR 19778/1 EN

    Google Scholar 

  • Kino K, Furusaka M, Hiraga F, Kamiyama T, Kiyanagi Y, Furutaka K, Goko S, Harada H, Harada M, Kai T, Kimura A, Kin T, Kitatani F, Koizumi M, Maekawa F, Meigo S, Nakamura S, Ooi M, Ohta M, Oshima M, Toh Y, Igashira M, Katabuchi T, Mizumoto M (2011) Measurement of energy spectra and spatial distributions of neutron beams provided by the ANNRI beam line for capture cross-section measurements at the J-PARC/MLF. Nucl Instr Meth Phys Res A 626–627:58–66

    Article  Google Scholar 

  • Klug J, Altstadt E, Beckert C, Beyer R, Freiesleben D, Galindo V, Grosse E, Junghans AR, Legrady D, Naumann B, Noack K, Rusev G, Schilling KD, Schlenk R, Schneider R, Wagner A, Weiss F-P (2007) Development of a neutron time-of-flight source at the ELBE accelerator. Nucl Inst Meth Phys Res A 577:641–653

    Article  Google Scholar 

  • Kobayashi K, Lee S, Yamamoto S, Kawano T (2004) Neutron capture cross-section measurement of 99Tc by linac time-of-flight and the resonance analysis. Nucl Sci Eng 146:209–220

    Google Scholar 

  • Koehler PE (2001) Comparison of white neutron sources for nuclear astrophysics experiments using very small sample. Nucl Inst Meth Phys Res A 460:352–361

    Article  Google Scholar 

  • Kopecky S, Siegler P, Moens A (2007) Low energy transmission measurements of 240,242Pu at GELINA and their impact on the capture width. In: Proceedings of International Conference on Nuclear Data for Science and Technology, Nice, France, pp 623–626

    Google Scholar 

  • Krause R (1989) Early tin and copper metallurgy in south-western Germany at the beginning of the Early Bronze Age. In: Hauptmann A, Pernicka E, Wagner GA (eds) Old world archaeometallurgy. pp 25–32

    Google Scholar 

  • Lamb WE (1939) Capture of neutrons by atoms in a crystal. Phys Rev 55:190–197

    Article  Google Scholar 

  • Lampoudis C, Kopecky S, Bouland O, Gunsing F, Noguere G, Plompen AJM, Sage C, Schillebeeckx P, Wynants R (2013) Neutron transmission and capture cross section measurements for 241Am at the GELINA facility. Eur Phys J Plus 128:86–105

    Article  Google Scholar 

  • Lane AM, Thomas RG (1958) R-matrix theory of nuclear reactions. Rev Mod Phys 30:257–353

    Article  Google Scholar 

  • Larson NM (2008) Updated users guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes’ equations, Report ORNL/TM-9179/R8 and ENDF-364/R2. Oak Ridge national laboratory, USA

    Book  Google Scholar 

  • Levermore CD, Pomraning GC, Sanzo DL, Wong J (1986) Linear transport theory in a random medium. J Math Phys 27:2526–2536

    Article  Google Scholar 

  • Lynn JE, Trela WJ, Meggers K (2002) Neutron Doppler broadening studies of tantalum and tungsten metal. Nucl Instr Meth Phys Res B 192:318–330

    Article  Google Scholar 

  • Maekawa F, Harada M, Oikawa K, Teshigawara M, Kai T, Meigo S, Ooi M, Sakamoto S, Takada H, Futakawa M, Kato T, Ikeda Y, Watanabe N, Kamiyama T, Torii S (2010) First neutron production utilizing J-PARC pulsed spallation neutron source JSNS and neutronic demonstrated. Nucl Instr Meth Phys Res A 620:159–165

    Article  Google Scholar 

  • Mondelaers W, Schillebeeckx P (2006) GELINA, a neutron time-of-flight facility for high-resolution neutron data measurements. Notiziario Neutroni e Luce di Sincrotrone 11(2):19–25

    Google Scholar 

  • Mor I, Vartsky D, Feldman G, Dangendorf V, Bar D, Goldberg MB, Tittelmeier K, Broomberger B, Weierganz W, Brandis M (2011) Parameters affecting image quality with Time-Resolved Optical Integrative (TRION) detectors. Nucl Instr Meth Phys Res A 640:192–199

    Article  Google Scholar 

  • Moxon MC, Brisland JB (1991) GEEL REFIT, a least squares fitting program for resonance analysis of neutron transmission and capture data computer code, AEA-InTec-0630, AEA Technology

    Google Scholar 

  • Moxon MC, Endacott DAJ, Haste TJ, Jolly JE, Lynn JE, Sowerby MG (1974) Differential neutron cross-sections of natural hafnium and its isotopes for neutron energies up to 30 eV, AERE—R 7864

    Google Scholar 

  • Nienhuis J, Postma H, Creemers G (2013) Four remarkable socketed axes from the Geistingen hoard. In: Creemers G (ed) Archaeological contributions to materials and immateriality, vol 4. Gallo-Roman Museum (Tongeren, BE), ATUATUCA, pp 8–21

    Google Scholar 

  • Noguere G, Cserpak F, Ingelbrecht C, Plompen AJM, Quetel CR, Schillebeeckx P (2007) Non-destructive analysis of materials by neutron resonance transmission. Nucl Instr Meth Phys Res A 575:476–488

    Article  Google Scholar 

  • Overberg ME, Moretti BE, Slovacek RE, Block RC (1999) Photoneutron target development for the RPI linear accelerator. Nucl Instr Meth A 438:253–264

    Article  Google Scholar 

  • Perelli Cippo E, Borella A, Gorini G, Kockelmann W, Pietropaolo A, Postma H, Rhodes NJ, Schillebeeckx P, Schooneveld EM, Tardocchi M, Wynants R (2010) A detector system for neutron resonance capture imaging. Nucl Instr Meth Phys Res A 623:693–698

    Google Scholar 

  • Perelli Cippo E, Borella A, Gorini G, Kockelmann W, Moxon M, Postma H, Rhodes NJ, Schillebeeck P, Schoonenveld EM, Tardocchi M, Dusz K, Hajnal Z, Biro K, Porcinai S, Andreani C, Festa G (2011) Imaging of cultural heritage objects using neutron resonances. J Anal At Spectrom 26:992–999

    Google Scholar 

  • Postma H, Schillebeeckx P (2005) Non-destructive analysis of objects using neutron resonance capture. J Radioanal Nucl Chem 265(2):297–302

    Article  Google Scholar 

  • Postma H, Schillebeeckx P (2009) Neutron resonance capture and transmission analysis, encyclopedia of analytical chemistry. In: Meyers RA (ed) John Wiley & Sons Ltd. (chapter a9070)

    Google Scholar 

  • Postma H, Blaauw M, Bode P, Mutti P, Corvi F, Siegler P (2001) Neutron resonance capture analysis of materials. J Radioanal Nucl Chem 248:113–120

    Article  Google Scholar 

  • Postma H, Blaauw M, Schillebeeckx P, Lobo G, Halbertsma RB, Nijboer AJ (2003) Non-destructive elemental analysis of copper-alloy artefacts with epithermal neutron-resonance capture. Czech J Phys 53:A233–A240

    Article  Google Scholar 

  • Postma H, Schillebeeckx P, Halbertsma RB (2004) Neutron resonance capture analysis of some genuine and fake Etruscan copper alloy statuettes. Archaeometry 46:635–646

    Article  Google Scholar 

  • Postma H, Butler JJ, Schillebeeckx P, van Eijk CWE (2007) Neutron resonance capture applied to some prehistoric bronze axes. Il Nuovo Cimento C 30:105–112

    Google Scholar 

  • Postma H, Amkreutz L, Borella A, Clarijs M, Kamermans H, Kockelmann W, Paradowska A, Schillebeeckx P, Visser D (2010) Non-destructive bulk analysis of the Buggenum sword by neutron resonance capture analysis and neutron diffraction. J Radioanal Nucl Chem 283:641–652

    Article  Google Scholar 

  • Postma H, Schillebeeckx P, Kockelmann W (2011) The metal compositions of a series of Geistingen-type socketed axes. J Archaeol Sci 38:1810–1817

    Article  Google Scholar 

  • Priesmeyer HG, Harz U (1975) Isotope content determination in irradiated fuel by neutron transmission analysis. Atomenergy 25:109–113

    Google Scholar 

  • Salomé JM, Cools R (1981) Neutron producing target at GELINA. Nucl Instr Meth 179:13–19

    Article  Google Scholar 

  • Schillebeeckx P, Borella A, Drohe JC, Eykens R, Kopecky S, Massimi C, Mihailescu LC, Moens A, Moxon M, Siegler P, Wynants R (2010) Target requirements for neutron induced cross-section measurements in the resonance region. Nucl Instr Meth Phys Res A 613:378–385

    Article  Google Scholar 

  • Schillebeeckx P, Borella A, Emiliani F, Gorini G, Kockelmann W, Kopecky S, Lampoudis C, Moxon M, Perelli Cippo E, Postma H, Rhodes NJ, Schooneveld EM, Van Beveren C (2012a) Neutron resonance spectroscopy for the characterization of materials and objects. JINST 7:C03009

    Google Scholar 

  • Schillebeeckx P, Becker B, Danon Y, Guber K, Harada H, Heyse J, Junghans AR, Kopecky S, Massimi C, Moxon MC, Otuka N, Sirakov I, Volev K (2012b) Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data. Nucl Data Sheets 113:3054–3100

    Article  Google Scholar 

  • Schillebeeckx P, Abousahl S, Becker B, Borella A, Harada H, Kauwenberghs K, Kitatani F, Koizumi M, Kopecky S, Moens A, Sibbens G, Tsuchiya H (2013) Development of Neutron Resonance Densitometry at the GELINA TOF Facility. ESARDA Bulletin 50:9–17

    Google Scholar 

  • Schillebeeckx P, Becker B, Harada H, Kopecky S (2014) Neutron resonance Spectroscopy for the characterisation of materials and objects. JRC Science and Policy Reports. European Commission, Joint Research Centre, Report EUR 26848-EN

    Google Scholar 

  • Schillebeeckx P, Becker B, Harada H, Kopecky S (2015) Neutron resonance spectroscopy for the characterization of materials and objects, Subchap. of Chap. I, Introduction: Recent State of Art in Neutron Resonance Spectroscopy, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series, Subvolume I/26A, Subseries: Elementary Particles, Nuclei and Atoms, Supplement to Subvolume B, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Schut PAC, Kockelmann W, Postma H, Visser D, Schillebeeckx P, Wynants R (2008) Neutron resonance capture and neutron diffraction analysis of Roman bronze water taps. J Radioanal Nucl Chem 278:151–164

    Article  Google Scholar 

  • Sirakov I, Becker B, Capote R, Dupont E, Kopecky S, Massimi C, Schillebeeckx P (2013) Results of total cross section measurements for 197Au in the neutron energy region from 4 to 108 keV at GELINA. Eur Phys J A 49:144–153

    Article  Google Scholar 

  • Sowerby BD, Tickner JR (2007) Recent advances in fast neutron radiography for cargo inspection. Nucl Instr Meth Phys Res A 580:799–802

    Article  Google Scholar 

  • Tokuda K, Kamiyama T, Kiyanagi Y, Moreh R, Ikeda S (2001) Direct observation of Effective Temperature of Ta Atom in Layer Compound TaS2 by Neutron Resonance Absorption Spectromoter. Jpn J Appl Phys 40:1504–1507

    Article  Google Scholar 

  • Tremsin AS, Shinohara T, Kai T, Ooi M, Kamiyama T, Kiyanagi Y, Shiota Y, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB (2014) Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source. Nucl Instr Meth Phys Res A 746:47–58

    Article  Google Scholar 

  • Tronc D, Salomé JM, Böckhoff K (1985) A new pulse compression system for intense relativistic electron beams. Nucl Instr Meth 228:217–227

    Article  Google Scholar 

  • Tsuchiya H, Harada H, Koizumi M, Kitatani F, Takamine J, Kureta M, Iimura H, Kimura A, Becker B, Kopecky S, Kauwenberghs K, Mondelaers W, Schillebeeckx P (2014) Impact of systematic effects on results of neutron transmission analysis. Nucl Instr Meth Phys Res A 767:364–371

    Article  Google Scholar 

  • Wang TF, Meaze AKMMH, Khandaker MU, Rahman MS, Kim GN, Zhu LP, Xia HH, Zhou ZY, Oh YD, Kang H, Cho MH, Ko IS, Namkung W (2008) Measurement of the total neutron cross-section and resonance parameters of molybdenum using pulsed neutrons generated by an electron linac. Nucl Instr Meth Phys Res. B 266:561–569

    Google Scholar 

  • Weigmann H, Winter J (1968) Neutron radiative capture in Cu, Zeits. für Physik 213:411–419

    Article  Google Scholar 

  • Yuan VW, Bowman JD, Funk DJ, Morgan GL, Rabic RL, Ragan CE, Quintana JP, Stacy HL (2005) Shock Temperature Measurement Using Neutron Resonance Spectroscopy. Phys Rev Lett 94:125504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Postma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Postma, H., Schillebeeckx, P. (2017). Neutron Resonance Analysis. In: Kardjilov, N., Festa, G. (eds) Neutron Methods for Archaeology and Cultural Heritage. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-33163-8_12

Download citation

Publish with us

Policies and ethics