Skip to main content

In Vitro Models of Itch

  • Chapter
  • First Online:
Pruritus

Abstract

Although itch is perceived through the brain, in vitro studies are possible and necessary to study its genesis. Cultures of keratinocytes or neurons or mast cells can be used. However, best models are provided by the co-culture of neurons and other cells: keratinocytes, mast cells, Langerhans cells, etc.… The best model is the co-culture of neurons and skin explants. In these models, representative biochemical, and sometimes electrophysiological, measurements can be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Agonist Peptide

CGRP:

Calcitonin Gene-Related Peptide

CNS:

Central Nervous System

DRG:

Dorsal Root Gangli

MMP:

Matrix Metallo Protease

NGF:

Nerve Growth Factor

PAR:

Protease Activated Receptor

PSN:

Primary Sensory Neuron

Sema3A:

Semaphorin 3A

SP:

Substance P

TSLP:

Thymic Stromal Lymphopoietin

References

  1. Pereira U, Misery L. Experimental models of itch. In: Misery L, Ständer S, editors. Pruritus. 1st ed. London: Springer; 2010. p. 51–9. Disponible sur: http://link.springer.com/chapter/10.1007/978-1-84882-322-8_9.

    Chapter  Google Scholar 

  2. Fostini AC, Girolomoni G. Experimental elicitation of itch: evoking and evaluation techniques. J Dermatol Sci. 2015;80(1):13–7.

    Google Scholar 

  3. Pereira U, Boulais N, Lebonvallet N, Lefeuvre L, Gougerot A, Misery L. Development of an in vitro coculture of primary sensitive pig neurons and keratinocytes for the study of cutaneous neurogenic inflammation. Exp Dermatol. 2010;19(10):931–5.

    Article  CAS  PubMed  Google Scholar 

  4. Shelley WB, Arthur RP. THe neurohistology and neurophysiology of the itch sensation in man. AMA Arch Dermatol. 1957;76(3):296–323.

    Article  CAS  Google Scholar 

  5. Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol. 2003;89(5):2441–8.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci. 2014;17(2):175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cevikbas F, Kempkes C, Buhl T, Mess C, Buddenkotte J, Steinhoff M. Role of interleukin-31 and oncostatin M in itch and neuroimmune communication. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 23 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200913/.

    Google Scholar 

  9. Boulais N, Pereira U, Lebonvallet N, Gobin E, Dorange G, Rougier N, et al. Merkel cells as putative regulatory cells in skin disorders: an in vitro study. PLoS One. 2009;4(8):e6528.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brazzini B, Ghersetich I, Hercogova J, Lotti T. The neuro-immuno-cutaneous-endocrine network: relationship between mind and skin. Dermatol Ther. 2003;16:123–31.

    Article  PubMed  Google Scholar 

  11. Gouin O, Lebonvallet N, L’Herondelle K, Le Gall-Ianotto C, Buhé V, Plée-Gautier E, et al. Self-maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Exp Dermatol. 2015;24:723–6.

    Article  CAS  PubMed  Google Scholar 

  12. Misery L. Skin, immunity and the nervous system. Br J Dermatol. 1997;137(6):843–50.

    Article  CAS  PubMed  Google Scholar 

  13. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev. 2006;86(4):1309–79.

    Article  CAS  PubMed  Google Scholar 

  14. Boulais N, Pereira U, Lebonvallet N, Misery L. The whole epidermis as the forefront of the sensory system. Exp Dermatol. 2007;16(8):634–5.

    Article  PubMed  Google Scholar 

  15. Pang Z, Sakamoto T, Tiwari V, Kim Y-S, Yang F, Dong X, et al. Selective keratinocyte stimulation is sufficient to evoke nociception in mice. Pain. 2015;156(4):656–65.

    Article  CAS  PubMed  Google Scholar 

  16. Andoh T, Kuraishi Y. Lipid mediators and itch. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 24 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200912/.

    Google Scholar 

  17. Thurmond RL, Kazerouni K, Chaplan SR, Greenspan AJ. Peripheral neuronal mechanism of itch: histamine and itch. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 24 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200934/.

    Google Scholar 

  18. Greaves MW, Davies MG. Histamine receptors in human skin: indirect evidence. Br J Dermatol. 1982;107 Suppl 23:101–5.

    Article  CAS  PubMed  Google Scholar 

  19. Rådinger M, Jensen BM, Kuehn HS, Kirshenbaum A, Gilfillan AM. Generation, isolation, and maintenance of human mast cells and mast cell lines derived from peripheral blood or cord blood. Curr Protoc Immunol. Ed John E Coligan Al. août 2010; Chapter 7: Unit 7.37.

    Google Scholar 

  20. Arock M, Le Nours A, Malbec O, Daëron M. Ex vivo and in vitro primary mast cells. Methods Mol Biol Clifton NJ. 2008;415:241–54.

    CAS  Google Scholar 

  21. Saito H, Kato A, Matsumoto K, Okayama Y. Culture of human mast cells from peripheral blood progenitors. Nat Protoc. 2006;1(4):2178–83.

    Article  CAS  PubMed  Google Scholar 

  22. Jensen BM, Swindle EJ, Iwaki S, Gilfillan AM. Generation, isolation, and maintenance of rodent mast cells and mast cell lines. Curr Protoc Immunol [Internet]. Wiley. 2001 [cité 27 juill 2015]. Disponible sur: http://onlinelibrary.wiley.com/. doi:10.1002/0471142735.im0323s74/abstract.

  23. Rogers DF, Donnelly LE, éditeurs. Isolation and purification of human mast cells and basophils. Springer, Humana Press; 2001 [cité 27 juill 2015]. Disponible sur: http://link.springer.com/protocol/10.1385%2F1-59259-151-5%3A161#page-1.

  24. Kulka M, Metcalfe DD. Isolation of tissue mast cells. Curr Protoc Immunol. Ed John E Coligan Al. mai 2001; CHAPTER: Unit – 7.25.

    Google Scholar 

  25. Willheim M, Agis H, Sperr WR, Köller M, Bankl H-C, Kiener H, et al. Purification of human basophils and mast cells by multistep separation technique and mAb to CDw17 and solCD117c-kit. J Immunol Methods. 1995;182(1):115–29.

    Article  CAS  PubMed  Google Scholar 

  26. Dai Y, But PP-H, Chan Y-P, Matsuda H, Kubo M. Antipruritic and antiinflammatory effects of aqueous extract from Si-Wu-Tang. Biol Pharm Bull. 2002;25(9):1175–8.

    Article  CAS  PubMed  Google Scholar 

  27. Furuno T, Hagiyama M, Sekimura M, Okamoto K, Suzuki R, Ito A, et al. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J Neuroimmunol. 2012;250(1–2):50–8.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki R, Furuno T, McKay DM, Wolvers D, Teshima R, Nakanishi M, et al. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J Immunol Baltim Md. 1999;163(5):2410–5.

    CAS  Google Scholar 

  29. Suzuki R, Furuno T, Teshima R, Nakanishi M. Bi-directional relationship of in vitro mast cell-nerve communication observed by confocal laser scanning microscopy. Biol Pharm Bull. 2001;24(3):291–4.

    Article  CAS  PubMed  Google Scholar 

  30. Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 24 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200931/.

    Google Scholar 

  31. Papoiu ADP, Tey HL, Coghill RC, Wang H, Yosipovitch G. Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch. PLoS One. 2011;6(3):e17786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campenot RB. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci. 1977;74(10):4516–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Campenot RB, Lund K, Mok S-A. Production of compartmented cultures of rat sympathetic neurons. Nat Protoc. 2009;4(12):1869–87.

    Article  CAS  PubMed  Google Scholar 

  34. Grothe C, Unsicker K. Neuron-enriched cultures of adult rat dorsal root ganglia: establishment, characterization, survival, and neuropeptide expression in response to trophic factors. J Neurosci Res. 1987;18(4):539–50.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Q, Weng H-J, Patel KN, Tang Z, Bai H, Steinhoff M, et al. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal. 2011;4(181):ra45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pereira U, Boulais N, Lebonvallet N, Pennec JP, Dorange G, Misery L. Mechanisms of the sensory effects of tacrolimus on the skin. Br J Dermatol. 2010;163(1):70–7.

    CAS  PubMed  Google Scholar 

  37. Nakano T, Andoh T, Tayama M, Kosaka M, Lee J-B, Kuraishi Y. Effects of topical application of tacrolimus on acute itch-associated responses in mice. Biol Pharm Bull. 2008;31(4):752–4.

    Article  CAS  PubMed  Google Scholar 

  38. Kim HO, Lee CH, Ahn HK, Park CW. Effects of tacrolimus ointment on the expression of substance P, nerve growth factor, and neurotrophin-3 in atopic dermatitis. Int J Dermatol. 2009;48:431–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tominaga M, Kamo A, Tengara S, Ogawa H, Takamori K. In vitro model for penetration of sensory nerve fibres on a Matrigel basement membrane: implications for possible application to intractable pruritus. Br J Dermatol. 2009;161(5):1028–37.

    Article  CAS  PubMed  Google Scholar 

  40. Tominaga M, Tengara S, Kamo A, Ogawa H, Takamori K. Matrix metalloproteinase-8 is involved in dermal nerve growth: implications for possible application to pruritus from in vitro models. J Invest Dermatol. 2011;131(10):2105–12.

    Article  CAS  PubMed  Google Scholar 

  41. Ulmann L, Rodeau J-L, Danoux L, Contet-Audonneau J-L, Pauly G, Schlichter R. Trophic effects of keratinocytes on the axonal development of sensory neurons in a coculture model. Eur J Neurosci. 2007;26(1):113–25.

    Article  PubMed  Google Scholar 

  42. Ulmann L, Rodeau J-L, Danoux L, Contet-Audonneau J-L, Pauly G, Schlichter R. Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. Neuroscience. 2009;159(2):514–25.

    Article  CAS  PubMed  Google Scholar 

  43. Lebonvallet N, Pennec J-P, Le Gall C, Pereira U, Boulais N, Cheret J, et al. Effect of human skin explants on the neurite growth of the PC12 cell line. Exp Dermatol. 2013;22(3):224–5.

    Article  CAS  PubMed  Google Scholar 

  44. Le Gall-Ianotto C, Andres E, Hurtado SP, Pereira U, Misery L. Characterization of the first coculture between human primary keratinocytes and the dorsal root ganglion-derived neuronal cell line F-11. Neuroscience. 2012;210:47–57.

    Article  PubMed  Google Scholar 

  45. Gingras M, Bergeron J, Déry J, Durham HD, Berthod F. In vitro development of a tissue-engineered model of peripheral nerve regeneration to study neurite growth. FASEB J Off Publ Fed Am Soc Exp Biol. 2003;17(14):2124–6.

    CAS  Google Scholar 

  46. Lebonvallet N, Boulais N, Le Gall C, Pereira U, Gauché D, Gobin E, et al. Effects of the re-innervation of organotypic skin explants on the epidermis. Exp Dermatol. 2012;21(2):156–8.

    Article  PubMed  Google Scholar 

  47. Sevrain D, Le Grand Y, Buhé V, Jeanmaire C, Pauly G, Carré J-L, et al. Two-photon microscopy of dermal innervation in a human re-innervated model of skin. Exp Dermatol. 2013;22(4):290–1.

    Article  PubMed  Google Scholar 

  48. Roggenkamp D, Falkner S, Stäb F, Petersen M, Schmelz M, Neufang G. Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest Dermatol. 2012;132(7):1892–900.

    Article  CAS  PubMed  Google Scholar 

  49. Kumamoto J, Nakatani M, Tsutsumi M, Goto M, Denda S, Takei K, et al. Coculture system of keratinocytes and dorsal-root-ganglion-derived cells for screening neurotrophic factors involved in guidance of neuronal axon growth in the skin. Exp Dermatol. 2014;23(1):58–60.

    Google Scholar 

  50. Tominaga M, Tengara S, Kamo A, Ogawa H, Takamori K. Psoralen-ultraviolet A therapy alters epidermal Sema3A and NGF levels and modulates epidermal innervation in atopic dermatitis. J Dermatol Sci. 2009;55(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  51. Tominaga M, Ogawa H, Takamori K. Decreased production of semaphorin 3A in the lesional skin of atopic dermatitis. Br J Dermatol. 2008;158(4):842–4.

    Article  CAS  PubMed  Google Scholar 

  52. Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol. 2013;133(6):1620–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lebonvallet N, Jeanmaire C, Danoux L, Sibille P, Pauly G, Misery L. The evolution and use of skin explants: potential and limitations for dermatological research. Eur J Dermatol EJD. 2010;20(6):671–84.

    PubMed  Google Scholar 

  54. Lebonvallet N, Pennec J-P, Le Gall-Ianotto C, Chéret J, Jeanmaire C, Carré J-L, et al. Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a re-innervated organotypic human skin model. Exp Dermatol. 2014;23(1):73–5.

    Google Scholar 

  55. Maurer K, Bostock H, Koltzenburg M. A rat in vitro model for the measurement of multiple excitability properties of cutaneous axons. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2007;118(11):2404–12.

    Article  Google Scholar 

  56. Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP, Clapham DE, et al. Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc. 2009;4(2):174–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spampinato SM, editor. Skin–nerve preparation to assay the function of opioid receptors in peripheral endings of sensory neurons. New York: Springer; 2015. [cité 30 juill 2015]. Disponible sur: http://link.springer.com/protocol/10.1007%2F978-1-4939-1708-2_17.

    Google Scholar 

  58. Akiyama T, Carstens E. Spinal coding of itch and pain. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 30 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200915/.

    Google Scholar 

  59. Ständer S, Weisshaar E, Raap U. Emerging drugs for the treatment of pruritus. Expert Opin Emerg Drugs. 2015;20(3):515–21.

    Google Scholar 

  60. Mollanazar NK, Smith PK, Yosipovitch G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin Rev Allergy Immunol. 2015;1–30.

    Google Scholar 

  61. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  62. Guo X, Spradling S, Stancescu M, Lambert S, Hickman JJ. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1. Biomaterials. 2013;34(18):4418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lebonvallet N, Boulais N, Le Gall C, Chéret J, Pereira U, Mignen O, et al. Characterization of neurons from adult human skin-derived precursors in serum-free medium : a PCR array and immunocytological analysis. Exp Dermatol. 2012;21(3):195–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Lebonvallet PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Lebonvallet, N., Misery, L. (2016). In Vitro Models of Itch. In: Misery, L., Ständer, S. (eds) Pruritus. Springer, Cham. https://doi.org/10.1007/978-3-319-33142-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33142-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33140-9

  • Online ISBN: 978-3-319-33142-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics