Skip to main content

Neurotropic Flaviviruses

  • Chapter
  • First Online:
Neurotropic Viral Infections

Abstract

Flaviviruses are small, positive-strand RNA viruses in the genus Flavivirus within the Flaviviridae family. The Flavivirus genus consists of nearly 80 viruses, approximately half of which are associated with human disease. The majority of flaviviruses are arthropod-borne viruses, or arboviruses, transmitted from infected to susceptible vertebrate hosts primarily by mosquitoes and ticks. Flavivirus infections cause seasonal disease syndromes corresponding to mosquito and tick activity throughout the temperate and tropical areas of the world. Medically important flaviviruses are associated with three clinical syndromes: encephalitis and meningitis; hemorrhagic fever; or fever, arthralgia, and rash. The neurotropic flaviviruses that cause neuroinvasive disease belong primarily to two groups: mosquito-borne viruses in the Japanese encephalitis serocomplex and tick-borne viruses in the tick-borne encephalitis serogroup. The most important human pathogens in these two groups in terms of number of cases include Japanese encephalitis virus, West Nile virus, St. Louis encephalitis virus, and Murray Valley encephalitis virus in the Japanese encephalitis serocomplex; in the tick-borne encephalitis serocomplex, Powassan virus and tick-borne encephalitis virus subtypes Far Eastern, Siberian, and European. In this chapter the general features of the neurotropic flaviviruses will be reviewed. Clinical disease syndromes, epidemiological and ecological aspects, as well as prevention strategies of specific medically important flaviviruses will be described in individual sections at the end of the chapter, with the exception of Japanese encephalitis virus, which will be presented in chapter “Borna Disease Virus.” Dengue viruses, which usually cause febrile illness or hemorrhagic manifestations, occasionally present as meningoencephalitis, and are discussed in chapter “Neurotropic Influenza Virus Infections.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AP, Travassos da Rosa AP, Nunes MR, Xiao SY, Tesh RB (2013) Pathogenesis of Modoc virus (Flaviviridae; Flavivirus) in persistently infected hamsters. Am J Trop Med Hyg 88:455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artsob H (1989) Powassan virus. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol IV. CRC Press, Boca Raton, pp 29–49

    Google Scholar 

  • Belikov SI, Kondratov IG, Potapova UV, Leonova GN (2014) The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. PLoS One 9, e94946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brault AC, Langevin SA, Bowen RA, Panella NA, Biggerstaff BJ, Miller BR, Komar N (2004) Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10:2161–2168

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinker KR, Paulson G, Monath TP, Wise G, Fass RJ (1979) St Louis encephalitis in Ohio, September 1975: clinical and EEG studies in 16 cases. Arch Intern Med 139:561–566

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Monath TP (2001) Flaviviruses. In: Knipe D, Howley P (eds) Fields virology, vol 1, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1043–1125

    Google Scholar 

  • Burke DS, Nisalak A, Ussery MA (1982) Antibody capture immunoassay detection of japanese encephalitis virus immunoglobulin m and g antibodies in cerebrospinal fluid. J Clin Microbiol 16:1034–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke DS, Nisalak A, Ussery MA, Laorakpongse T, Chantavibul S (1985) Kinetics of IgM and IgG responses to Japanese encephalitis virus in human serum and cerebrospinal fluid. J Infect Dis 151:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Calisher C, Karabatsos N (1988) Arbovirus serogroups: definition and geographic distribution. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol I. CRC Press, Boca Raton, pp 19–57

    Google Scholar 

  • Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Brandt WE (1989) Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70(Pt 1):37–43

    Article  PubMed  Google Scholar 

  • Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile virus. Lancet Infect Dis 2:519–529

    Article  PubMed  Google Scholar 

  • Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(766–774):774A–774E

    Google Scholar 

  • Centers for Disease Control and Prevention (2009) West Nile virus transmission via organ transplantation and blood transfusion—Louisiana, 2008. MMWR Morb Mortal Wkly Rep 58:1263–1267

    Google Scholar 

  • Centers for Disease Control and Prevention (2003) Update: detection of West Nile virus in blood donations—United States, 2003. [erratum appears in MMWR Morb Mortal Wkly Rep. 2003 Oct 3;52(39):942]. MMWR Morb Mortal Wkly Rep 52:916–919

    Google Scholar 

  • Centers for Disease Control and Prevention (2004) Update: West Nile virus screening of blood donations and transfusion-associated transmission—United States, 2003. MMWR Morb Mortal Wkly Rep 53:281–284

    Google Scholar 

  • Centers for Disease Control and Prevention (2001) Outbreak of Powassan encephalitis—Maine and Vermont, 1999–2001. MMWR Morb Mortal Wkly Rep 50:761–764

    Google Scholar 

  • Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  CAS  PubMed  Google Scholar 

  • Chanama S, Sukprasert W, Sa-ngasang A, An A, Sangkitporn S, Kurane I, Anantapreecha S (2005) Detection of Japanese encephalitis (JE) virus-specific IgM in cerebrospinal fluid and serum samples from JE patients. Jpn J Infect Dis 58:294–296

    CAS  PubMed  Google Scholar 

  • Cushing MM, Brat DJ, Mosunjac MI, Hennigar RA, Jernigan DB, Lanciotti R, Petersen LR, Goldsmith C, Rollin PE, Shieh WJ, Guarner J, Zaki SR (2004) Fatal West Nile virus encephalitis in a renal transplant recipient. Am J Clin Pathol 121:26–31

    Article  PubMed  Google Scholar 

  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75:4040–4047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donadieu E, Bahuon C, Lowenski S, Zientara S, Coulpier M, Lecollinet S (2013) Differential virulence and pathogenesis of West Nile viruses. Viruses 5:2856–2880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas MW, Stephens DP, Burrow JN, Anstey NM, Talbot K, Currie BJ (2006) Murray Valley encephalitis in an adult traveller complicated by long-term flaccid paralysis: case report and review of the literature. Trans R Soc Trop Med Hyg 101(3):284–288

    Article  PubMed  Google Scholar 

  • Ebel GD (2010) Update on Powassan virus: emergence of a North American tick-borne flavivirus. Annu Rev Entomol 55:95–110

    Article  CAS  PubMed  Google Scholar 

  • Ei Khoury MY, Camargo JF, Wormser GP (2013) Changing epidemiology of Powassan encephalitis in North America suggests the emergence of the deer tick virus subtype. Expert Rev Anti Infect Ther 11:983–985

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo LT (2000) The Brazilian flaviviruses. Microbes Infect 2:1643–1649

    Article  CAS  PubMed  Google Scholar 

  • Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB (2011) Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17:880–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Reiche AS, Monzon-Pineda Mde L, Johnson BW, Morales-Betoulle ME (2010) Detection of West Nile viral RNA from field-collected mosquitoes in tropical regions by conventional and real-time RT-PCR. Methods Mol Biol 630:109–124

    Article  CAS  PubMed  Google Scholar 

  • Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371:500–509

    Article  CAS  PubMed  Google Scholar 

  • Grard G, Moureau G, Charrel RN, Lemasson JJ, Gonzalez JP, Gallian P, Gritsun TS, Holmes EC, Gould EA, de Lamballerie X (2006) Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361(1):80–92

    Article  PubMed  CAS  Google Scholar 

  • Gresikova M, Calisher C (1989) Tick-borne encephalitis. In: Monath T (ed) The arboviruses: epidemiology and ecology, vol IV. CRC Press, Boca Raton, pp 177–202

    Google Scholar 

  • Gritsun TS, Holmes EC, Gould EA (1995) Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Res 35:307–321

    Article  CAS  PubMed  Google Scholar 

  • Gritsun TS, Lashkevich VA, Gould EA (2003) Tick-borne encephalitis. Antiviral Res 57:129–146

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (1998a) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler DJ (1998b) The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann Acad Med Singapore 27:227–234

    CAS  PubMed  Google Scholar 

  • Gubler D, Kuno G, Markoff L (2007) Flaviviruses, 5th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Guirakhoo F, Bolin RA, Roehrig JT (1992) The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191:921–931

    Article  CAS  PubMed  Google Scholar 

  • Halstead SB, Jacobson J (2003) Japanese encephalitis. Adv Virus Res 61:103–138

    Article  PubMed  Google Scholar 

  • Hayes E, Gubler D (2005) West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 57:181–194

    Article  CAS  Google Scholar 

  • Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL (2005) Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11:1174–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinz FX, Roehrig JT (1990) Flaviviruses. Elsevier Science Publishing BV, Amsterdam

    Google Scholar 

  • Hills S, Martin R, Marfin A, Fischer M (2014) Control of Japanese encephalitis in Asia: the time is now. Expert Rev Anti Infect Ther 12:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogrefe WR, Moore R, Lape-Nixon M, Wagner M, Prince HE (2004) Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. J Clin Microbiol 42:4641–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversson LB (1989) Rocio encephalitis. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol IV. CRC Press, Boca Raton, pp 77–92

    Google Scholar 

  • Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR (2003) Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med 348:2196–2203

    Article  PubMed  Google Scholar 

  • Jeffries CL, Mansfield KL, Phipps LP, Wakeley PR, Mearns R, Schock A, Bell S, Breed AC, Fooks AR, Johnson N (2014) Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol 95:1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AJ, Martin DA, Karabatsos N, Roehrig JT (2000) Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol 38:1827–1831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AJ, Noga AJ, Kosoy O, Lanciotti RS, Johnson AA, Biggerstaff BJ (2005a) Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin DiagnLab Immunol 12:566–574

    CAS  Google Scholar 

  • Johnson BW, Kosoy O, Martin DA, Noga AJ, Russell BJ, Johnson AA, Petersen LR (2005b) West Nile virus infection and serologic response among persons previously vaccinated against yellow fever and Japanese encephalitis viruses. Vector Borne Zoonotic Dis 5:137–145

    Article  CAS  PubMed  Google Scholar 

  • Johnston LLJ, Halliday GGM, King NNJ (2000) Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114:560–568

    Article  CAS  PubMed  Google Scholar 

  • Kaiser R (2002) Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int J Med Microbiol 291(Suppl 33):58–61

    Article  PubMed  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012). Virus taxonomy: classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego.

    Google Scholar 

  • Komar N, Clark GG (2006) West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica 19:112–117

    Article  PubMed  Google Scholar 

  • Komar O, Robbins MB, Contreras GG, Benz BW, Klenk K, Blitvich BJ, Marlenee NL, Burkhalter KL, Beckett S, Gonzalvez G, Pena CJ, Peterson AT, Komar N (2005) West Nile virus survey of birds and mosquitoes in the Dominican Republic. Vector Borne Zoonotic Dis 5:120–126

    Article  PubMed  Google Scholar 

  • Koschinski A, Wengler G, Wengler G, Repp H (2003) The membrane proteins of flaviviruses form ion-permeable pores in the target membrane after fusion: identification of the pores and analysis of their possible role in virus infection. J Gen Virol 84:1711–1721

    Article  CAS  PubMed  Google Scholar 

  • Kramer LD (2007) West Nile virus. Lancet Neurol 6:171–181

    Article  CAS  PubMed  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuno G, Chang GJ (2005) Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciotti RS, Kerst AJ (2001) Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. J Clin Microbiol 39:4506–4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT (2000) Rapid detection of west nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38:4066–4071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT (2002) Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96–105

    Article  CAS  PubMed  Google Scholar 

  • Leonova GN, Maystrovskaya OS, Kondratov IG, Takashima I, Belikov SI (2014) The nature of replication of tick-borne encephalitis virus strains isolated from residents of the Russian Far East with inapparent and clinical forms of infection. Virus Res 189:34–42

    Article  CAS  PubMed  Google Scholar 

  • Libraty DH, Nisalak A, Endy TP, Suntayakorn S, Vaughn DW, Innis BL (2002) Clinical and immunological risk factors for severe disease in Japanese encephalitis. Trans R Soc Trop Med Hyg 96:173–178

    Article  PubMed  Google Scholar 

  • Lindenbach B, Rice C (2001) Flaviviridae: the viruses and their replication. In: Knipe D, Howley P (eds) Fields virology, vol 1, 4th edn. Lippincott William and Wilkins, Philadelphia, pp 991–1043

    Google Scholar 

  • Lindenbach B, Heinz-Jurgen T, Rice C (2007) Flaviviridae: the viruses and their replication. In: Knipe D, Howley P (eds) Fields virology, vol 1, 5th edn. Lippincott William and Wilkins, Philadelphia, pp 1101–1152

    Google Scholar 

  • Lindquist L (2008) Tick-borne encephalitis (TBE) in childhood. Acta Paediatr 97:532–534

    Article  PubMed  Google Scholar 

  • Lindquist L, Vapalahti O (2008) Tick-borne encephalitis. Lancet 371:1861–1871

    Article  PubMed  Google Scholar 

  • Lindsey NP, Sejvar JJ, Bode AV, Pape WJ, Campbell GL (2012) Delayed mortality in a cohort of persons hospitalized with West Nile virus disease in Colorado in 2003. Vector Borne Zoonotic Dis 12:230–235

    Article  PubMed  Google Scholar 

  • Logar M, Arnez M, Kolbl J, Avsic-Zupanc T, Strle F (2000) Comparison of the epidemiological and clinical features of tick-borne encephalitis in children and adults. Infection 28:74–77

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie JS, Field HE (2004) Emerging encephalitogenic viruses: lyssaviruses and henipaviruses transmitted by frugivorous bats. Arch Virol Suppl 18:97–111

    PubMed  Google Scholar 

  • Mackenzie J, Poidninger M, Lindsay M, Hall R, Sammels L (1996) Molecular epidemiology and evolution of mosquito-borne flaviviruses and alphaviruses enzootic in Australia. Virus Genes 11:225–237

    Article  Google Scholar 

  • Marfin AA, Eidex RS, Kozarsky PE, Cetron MS (2005) Yellow fever and Japanese encephalitis vaccines: indications and complications. Infect Dis Clin North Am 19(151–168):ix

    Google Scholar 

  • Marshall I (1988) Murray Valley and Kunjin encephalitis. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol III. CRC Press, Boca Raton, pp 151–189

    Google Scholar 

  • Martin DA, Muth DA, Brown T, Johnson AJ, Karabatsos N, Roehrig JT (2000) Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections. J Clin Microbiol 38:1823–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, Roehrig JT (2002) Use of immunoglobulin M cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol 9:544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattar S, Edwards E, Laguado J, Gonzalez M, Alvarez J, Komar N (2005) West Nile virus antibodies in Colombian horses. Emerg Infect Dis 11:1497–1498

    Article  PubMed  PubMed Central  Google Scholar 

  • McMinn PC (1997) The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol 78(Pt 11):2711–2722

    Article  CAS  PubMed  Google Scholar 

  • Medeiros DB, Nunes MR, Vasconcelos PF, Chang GJ, Kuno G (2007) Complete genome characterization of Rocio virus (Flavivirus: Flaviviridae), a Brazilian flavivirus isolated from a fatal case of encephalitis during an epidemic in Sao Paulo state. J Gen Virol 88:2237–2246

    Article  CAS  PubMed  Google Scholar 

  • Monath TP (1986) Pathobiology of the flaviviruses. Plenum, New York

    Book  Google Scholar 

  • Monath TP (1989) Yellow fever. In: Monath TP (ed) The arboviruses:epidemiology and ecology, vol 5. CRC Press, Boca Raton, pp 139–231

    Google Scholar 

  • Monath T (1999) Yellow fever. In: Plotkin S, Orenstein W (eds) Vaccines, 3rd edn. WB Saunders, Philadelphia

    Google Scholar 

  • Monath TP (2001) Prospects for development of a vaccine against the West Nile virus. Ann N Y Acad Sci 951:1–12

    Article  CAS  PubMed  Google Scholar 

  • Monath TP (2002) Japanese encephalitis vaccines: current vaccines and future prospects. Curr Top Microbiol Immunol 267:105–138

    CAS  PubMed  Google Scholar 

  • Montgomery SP, Brown JA, Kuehnert M, Smith TL, Crall N, Lanciotti RS, Macedo de Oliveira A, Boo T, Marfin AA (2006) Transfusion-associated transmission of West Nile virus, United States 2003 through 2005. Transfusion 46:2038–2046

    Article  PubMed  Google Scholar 

  • Morales MA, Barrandeguy M, Fabbri C, Garcia JB, Vissani A, Trono K, Gutierrez G, Pigretti S, Menchaca H, Garrido N, Taylor N, Fernandez F, Levis S, Enria D (2006) West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis 12:1559–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Betoulle ME, Komar N, Panella NA, Alvarez D, Lopez MR, Betoulle JL, Sosa SM, Muller ML, Kilpatrick AM, Lanciotti RS, Johnson BW, Powers AM, Cordon-Rosales C, Arbovirus Ecology Work G (2013) West Nile virus ecology in a tropical ecosystem in Guatemala. Am J Trop Med Hyg 88:116–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, Charrel RN, Firth AE, Gould EA, de Lamballerie X (2015) New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 10, e0117849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248

    Article  CAS  PubMed  Google Scholar 

  • Murgod UA, Muthane UB, Ravi V, Radhesh S, Desai A (2001) Persistent movement disorders following Japanese encephalitis. Neurology 57:2313–2315

    Article  CAS  PubMed  Google Scholar 

  • Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM (2015) Potential sexual transmission of Zika virus. Emerg Infect Dis 21:359–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasci RS, Komar N, Marfin AA, Ludwig GV, Kramer LD, Daniels TJ, Falco RC, Campbell SR, Brookes K, Gottfried KL, Burkhalter KL, Aspen SE, Kerst AJ, Lanciotti RS, Moore CG (2002) Detection of West Nile virus-infected mosquitoes and seropositive juvenile birds in the vicinity of virus-positive dead birds. Am J Trop Med Hyg 67:492–496

    PubMed  Google Scholar 

  • Niedrig M, Sonnenberg K, Steinhagen K, Paweska JT (2007) Comparison of ELISA and immunoassays for measurement of IgG and IgM antibody to West Nile virus in human sera against virus neutralisation. J Virol Methods 139:103–105

    Article  CAS  PubMed  Google Scholar 

  • O’Leary DR, Kuhn S, Kniss KL, Hinckley AF, Rasmussen SA, Pape WJ, Kightlinger LK, Beecham BD, Miller TK, Neitzel DF, Michaels SR, Campbell GL, Lanciotti RS, Hayes EB (2006) Birth outcomes following West Nile Virus infection of pregnant women in the United States: 2003–2004. Pediatrics 117:e537–e545

    Article  PubMed  Google Scholar 

  • Palo RT (2014) Tick-borne encephalitis transmission risk: its dependence on host population dynamics and climate effects. Vector Borne Zoonotic Dis 14:346–352

    Article  PubMed  Google Scholar 

  • Petersen LR, Marfin AA (2002) West Nile virus: a primer for the clinician. Ann Intern Med 137:173–179

    Article  PubMed  Google Scholar 

  • Petersen LRLR, Roehrig JTJT, Hughes JMJM (2002) West Nile virus encephalitis. N Engl J Med 347:1225–1226

    Article  PubMed  Google Scholar 

  • Petersen LR, Marfin AA, Gubler DJ (2003) West Nile virus. JAMA 290:524–528

    Article  PubMed  Google Scholar 

  • Porterfield JS (1986) Antibody-dependent enhancement of viral infectivity. Adv Virus Res 31:335–355

    Article  CAS  PubMed  Google Scholar 

  • Reid H (1988) Louping-ill. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol III. CRC Press, Boca Raton, pp 117–135

    Google Scholar 

  • Rocco IM, Santos CL, Bisordi I, Petrella SM, Pereira LE, Souza RP, Coimbra TL, Bessa TA, Oshiro FM, Lima LB, Cerroni MP, Marti AT, Barbosa VM, Katz G, Suzuki A (2005) St. Louis encephalitis virus: first isolation from a human in Sao Paulo State, Brazil. Rev Inst Med Trop Sao Paulo 47:281–285

    Article  PubMed  Google Scholar 

  • Roehrig JT (2003) Antigenic structure of flavivirus proteins. Adv Virus Res 59:141–175

    Article  CAS  PubMed  Google Scholar 

  • Roehrig JT, Nash D, Maldin B, Labowitz A, Martin DA, Lanciotti RS, Campbell GL (2003) Persistence of virus-reactive serum immunoglobulin m antibody in confirmed west nile virus encephalitis cases. Emerg Infect Dis 9:376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossini G, Cavrini F, Pierro A, Macini P, Finarelli A, Po C, Peroni G, Di Caro A, Capobianchi M, Nicoletti L, Landini M, Sambri V (2008) First human case of West Nile virus neuroinvasive infection in Italy, September 2008—case report. Euro Surveill. 13(41)

    Google Scholar 

  • Sambri V, Capobianchi M, Charrel R, Fyodorova M, Gaibani P, Gould E, Niedrig M, Papa A, Pierro A, Rossini G, Varani S, Vocale C, Landini MP (2013) West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention. Clin Microbiol Infect 19:699–704

    Article  CAS  PubMed  Google Scholar 

  • Sejvar JJ (2014) Clinical manifestations and outcomes of West Nile virus infection. Viruses 6:606–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sejvar JJ, Marfin AA (2006) Manifestations of West Nile neuroinvasive disease. Rev Med Virol 16:209–224

    Article  PubMed  Google Scholar 

  • Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, Fleischauer A, Leis AA, Stokic DS, Petersen LR (2003a) Neurologic manifestations and outcome of West Nile virus infection. Jama 290:511–515

    Article  PubMed  Google Scholar 

  • Sejvar JJ, Leis AA, Stokic DS, Van Gerpen JA, Marfin AA, Webb R, Haddad MB, Tierney BC, Slavinski SA, Polk JL, Dostrow V, Winkelmann M, Petersen LR (2003b) Acute flaccid paralysis and West Nile virus infection. Emerg Infect Dis 9:788–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Sejvar JJ, Davis LE, Szabados E, Jackson AC (2010) Delayed-onset and recurrent limb weakness associated with West Nile virus infection. J Neurovirol 16:93–100

    Article  PubMed  Google Scholar 

  • Seligman SJ, Bucher DJ (2003) The importance of being outer: consequences of the distinction between the outer and inner surfaces of flavivirus glycoprotein E. Trends Microbiol 11:108–110

    Article  CAS  PubMed  Google Scholar 

  • Selvey LA, Dailey L, Lindsay M, Armstrong P, Tobin S, Koehler AP, Markey PG, Smith DW (2014) The changing epidemiology of Murray Valley encephalitis in Australia: the 2011 outbreak and a review of the literature. PLoS Negl Trop Dis 8:e2656

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva JR, Romeiro MF, Souza WM, Munhoz TD, Borges GP, Soares OA, Campos CH, Machado RZ, Silva ML, Faria JL, Chavez JH, Figueiredo LT (2014) A Saint Louis encephalitis and Rocio virus serosurvey in Brazilian horses. Rev Soc Bras Med Trop 47:414–417

    Article  PubMed  Google Scholar 

  • Smit R, Postma MJ (2014) Review of tick-borne encephalitis and vaccines: clinical and economical aspects. Expert Rev Vaccines 14(5):737–747

    Article  PubMed  CAS  Google Scholar 

  • Solomon T (2003) Recent advances in Japanese encephalitis. J Neurovirol 9:274–283

    Article  CAS  PubMed  Google Scholar 

  • Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351:370–378

    Article  CAS  PubMed  Google Scholar 

  • Solomon T (2006) Control of Japanese encephalitis—within our grasp? N Engl J Med 355:869–871

    Article  CAS  PubMed  Google Scholar 

  • Solomon T, Winter PM (2004) Neurovirulence and host factors in flavivirus encephalitis—evidence from clinical epidemiology. Arch Virol Suppl 18:161–170

    PubMed  Google Scholar 

  • Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT (2000) Japanese encephalitis. J Neurol Neurosurg Psychiatry 68:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinsanti LI, Diaz LA, Glatstein N, Arselan S, Morales MA, Farias AA, Fabbri C, Aguilar JJ, Re V, Frias M, Almiron WR, Hunsperger E, Siirin M, Da Rosa AT, Tesh RB, Enria D, Contigiani M (2008) Human outbreak of St. Louis encephalitis detected in Argentina, 2005. J Clin Virol 42:27–33

    Article  PubMed  Google Scholar 

  • Staples JE, Shankar MB, Sejvar JJ, Meltzer MI, Fischer M (2014) Initial and long-term costs of patients hospitalized with West Nile virus disease. Am J Trop Med Hyg 90:402–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesh RB, Travassos da Rosa AP, Guzman H, Araujo TP, Xiao SY (2002) Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis 8:245–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilley PA, Fox JD, Jayaraman GC, Preiksaitis JK (2006) Nucleic acid testing for west nile virus RNA in plasma enhances rapid diagnosis of acute infection in symptomatic patients. J Infect Dis 193:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Tsai T, Mitchell C (1989) St. Louis encephalitis. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol IV. CRC Press, Boca Raton, pp 113–143

    Google Scholar 

  • Wittermann C, Izu A, Petri E, Gniel D, Fragapane E (2015) Five year follow-up after primary vaccination against tick-borne encephalitis in children. Vaccine 33(15):1824–1829

    Article  PubMed  Google Scholar 

  • Wong SJ, Boyle RH, Demarest VL, Woodmansee AN, Kramer LD, Li H, Drebot M, Koski RA, Fikrig E, Martin DA, Shi PY (2003) Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol 41:4217–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SJ, Demarest VL, Boyle RH, Wang T, Ledizet M, Kar K, Kramer LD, Fikrig E, Koski RA (2004) Detection of human anti-flavivirus antibodies with a west nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol 42:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun SM, Kim SY, Ju YR, Han MG, Jeong YE, Ryou J (2011) First complete genomic characterization of two tick-borne encephalitis virus isolates obtained from wild rodents in South Korea. Virus Genes 42:307–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG (2003) Structures of immature flavivirus particles. Embo J 22:2604–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Jennifer Leyman of the CDC Division of Vector-borne Diseases for providing the flavivirus distribution maps; Cynthia Goldsmith, CDC, for providing the West Nile electron micrograph; Sherif Zaki, CDC, for providing the immunohistochemical staining photomicrograph; and Mary Crabtree for construction of the flavivirus phylogenetic tree.

Note: The findings and conclusions in this chapter are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara W. Johnson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, B.W. (2016). Neurotropic Flaviviruses. In: Reiss, C. (eds) Neurotropic Viral Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-33133-1_9

Download citation

Publish with us

Policies and ethics