Skip to main content

Reovirus

  • Chapter
  • First Online:

Abstract

Mammalian orthoreoviruses are nonenveloped dsRNA viruses that infect most mammals including humans and mice. Following oral inoculation of newborn mice, reovirus disseminates to the CNS and produces a nonlethal hydrocephalus or a lethal encephalitis, depending on the virus strain. This strain-dependent manifestation of reovirus disease coupled with the availability of a reverse genetics system has enabled the identification of virus and host determinants of reovirus neuropathogenesis and elucidated mechanisms of reovirus receptor binding, internalization, uncoating, cell injury, dissemination, and disease. This chapter will describe key features of reovirus neuropathogenesis and provide perspectives for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antar AAR, Konopka JL, Campbell JA, Henry RA, Perdigoto AL, Carter BD, Pozzi A, Abel TW, Dermody TS (2009) Junctional adhesion molecule-A is required for hematogenous dissemination of reovirus. Cell Host Microbe 5:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda MA, Fraile A, Garcia-Arenal F (1993) Genetic variability and evolution of the satellite RNA of cucumber mosaic virus during natural epidemics. J Virol 67(10):5896–5901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barkon ML, Haller BL, Virgin HW (1996) Circulating immunoglobulin G can play a critical role in clearance of intestinal reovirus infection. J Virol 70(2):1109–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermody TS (2001a) Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem 276:2200–2211

    Article  CAS  PubMed  Google Scholar 

  • Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell F, Nusrat A, Parkos CA, Dermody TS (2001b) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451

    Article  CAS  PubMed  Google Scholar 

  • Barton WA, Liu BP, Tzvetkova D, Jeffrey PD, Fournier AE, Sah D, Cate R, Strittmatter SM, Nikolov DB (2003a) Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J 22(13):3291–3302. doi:10.1093/emboj/cdg325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton ES, Youree BE, Ebert DH, Forrest JC, Connolly JL, Valyi-Nagy T, Washington K, Wetzel JD, Dermody TS (2003b) Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease. J Clin Invest 111(12):1823–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass DM, Trier JS, Dambrauskas R, Wolf JL (1988) Reovirus type 1 infection of small intestinal epithelium in suckling mice and its effect on M cells. Lab Investig 58:226–235

    CAS  PubMed  Google Scholar 

  • Bass DM, Bodkin D, Dambrauskas R, Trier JS, Fields BN, Wolf JL (1990) Intraluminal proteolytic activation plays an important role in replication of type 1 reovirus in the intestines of neonatal mice. J Virol 64:1830–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazzoni G (2003) The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 15:525–530

    Article  CAS  PubMed  Google Scholar 

  • Beckham JD, Goody RJ, Clarke P, Bonny C, Tyler KL (2007) Novel strategy for treatment of viral central nervous system infection by using a cell-permeating inhibitor of c-Jun N-terminal kinase. J Virol 81(13):6984–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berens HM, Tyler KL (2011) The proapoptotic Bcl-2 protein Bax plays an important role in the pathogenesis of reovirus encephalitis. J Virol 85(8):3858–3871. doi:10.1128/Jvi.01958-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger AK, Danthi P (2013) Reovirus activates a caspase-independent cell death pathway. MBio 4(3):e00178–00113. doi:10.1128/mBio.00178-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodkin DK, Fields BN (1989) Growth and survival of reovirus in intestinal tissue: role of the L2 and S1 genes. J Virol 63:1188–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodkin DK, Nibert ML, Fields BN (1989) Proteolytic digestion of reovirus in the intestinal lumens of neonatal mice. J Virol 63:4676–4681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boehme KW, Guglielmi KM, Dermody TS (2009) Reovirus nonstructural protein σ1s is required for establishment of viremia and systemic dissemination. Proc Natl Acad Sci U S A 106(47):19986–19991. doi:10.1073/pnas.0907412106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehme KW, Frierson JM, Konopka JL, Kobayashi T, Dermody TS (2011) The reovirus σ1s protein is a determinant of hematogenous but not neural virus dissemination in mice. J Virol 85(22):11781–11790. doi:10.1128/JVI.02289-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokiej M, Ogden KM, Ikizler M, Reiter DM, Stehle T, Dermody TS (2012) Optimum length and flexibility of reovirus attachment protein σ1 are required for efficient viral infection. J Virol 86(19):10270–10280. doi:10.1128/JVI.01338-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borsa J, Sargent MD, Lievaart PA, Copps TP (1981) Reovirus: evidence for a second step in the intracellular uncoating and transcriptase activation process. Virology 111(1):191–200

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. doi:10.1007/s12035-010-8105-9

    Article  CAS  PubMed  Google Scholar 

  • Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF, Youle RJ (1997) A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med 186(6):967–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran K, Farsetta DL, Nibert ML (2002) Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein μ1 mediates membrane disruption. J Virol 76(19):9920–9933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran K, Parker JS, Ehrlich M, Kirchhausen T, Nibert ML (2003) The delta region of outer-capsid protein μ1 undergoes conformational change and release from reovirus particles during cell entry. J Virol 77(24):13361–13375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CT, Zweerink HJ (1971) Fate of parental reovirus in infected cell. Virology 46(3):544–555

    Article  CAS  PubMed  Google Scholar 

  • Chappell JD, Gunn VL, Wetzel JD, Baer GS, Dermody TS (1997) Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein σ1. J Virol 71(3):1834–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell JD, Barton ES, Smith TH, Baer GS, Duong DT, Nibert ML, Dermody TS (1998) Cleavage susceptibility of reovirus attachment protein σ1 during proteolytic disassembly of virions is determined by a sequence polymorphism in the σ1 neck. J Virol 72:8205–8213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell JD, Duong JL, Wright BW, Dermody TS (2000) Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses. J Virol 74(18):8472–8479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell JD, Prota A, Dermody TS, Stehle T (2002) Crystal structure of reovirus attachment protein σ1 reveals evolutionary relationship to adenovirus fiber. EMBO J 21:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8(3):237–249

    Article  CAS  PubMed  Google Scholar 

  • Chua K, Crameri G, Hyatt H, Yu M, Tompang M, Rosli J, McEachern M, Crameri S, Kumarasamy V, Eaton B, Wang L (2007) A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Natl Acad Sci U S A 104(27):11424–11429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke P, Meintzer SM, Gibson S, Widmann C, Garrington TP, Johnson GL, Tyler KL (2000) Reovirus-induced apoptosis is mediated by TRAIL. J Virol 74:8135–8139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke P, Meintzer SM, Widmann C, Johnson GL, Tyler KL (2001a) Reovirus infection activates JNK and the JNK-dependent transcription factor c-Jun. J Virol 75(23):11275–11283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke P, Meintzer SM, Spalding AC, Johnson GL, Tyler KL (2001b) Caspase 8-dependent sensitization of cancer cells to TRAIL-induced apoptosis following reovirus-infection. Oncogene 20(47):6910–6919

    Article  CAS  PubMed  Google Scholar 

  • Clarke P, Debiasi RL, Meintzer SM, Robinson BA, Tyler KL (2005) Inhibition of NF-kappa B activity and cFLIP expression contribute to viral-induced apoptosis. Apoptosis 10(3):513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke P, Beckham JD, Leser JS, Hoyt CC, Tyler KL (2009) Fas-mediated apoptotic signaling in the mouse brain following reovirus infection. J Virol 83(12):6161–6170. doi:10.1128/JVI.02488-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey MC, Strong JE, Forsyth PA, Lee PW (1998) Reovirus therapy of tumors with activated Ras pathway. Science 282(5392):1332–1334

    Article  CAS  PubMed  Google Scholar 

  • Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JS (2006) Reovirus outer capsid protein μ1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 80(17):8422–8438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly JL, Dermody TS (2002) Virion disassembly is required for apoptosis induced by reovirus. J Virol 76:1632–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly JL, Rodgers SE, Clarke P, Ballard DW, Kerr LD, Tyler KL, Dermody TS (2000) Reovirus-induced apoptosis requires activation of transcription factor NF-kB. J Virol 74(7):2981–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly JL, Barton ES, Dermody TS (2001) Reovirus binding to cell surface sialic acid potentiates virus-induced apoptosis. J Virol 75(9):4029–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danthi P (2011) Enter the kill zone: initiation of death signaling during virus entry. Virology 411(2):316–324. doi:10.1016/j.virol.2010.12.043

    Article  CAS  PubMed  Google Scholar 

  • Danthi P, Coffey CM, Parker JS, Abel TW, Dermody TS (2008a) Independent regulation of reovirus membrane penetration and apoptosis by the μ1 ϕ domain. PLoS Pathog 4(12):e1000248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danthi P, Kobayashi T, Holm GH, Hansberger MW, Abel TW, Dermody TS (2008b) Reovirus apoptosis and virulence are regulated by host cell membrane-penetration efficiency. J Virol 82(1):161–172

    Article  CAS  PubMed  Google Scholar 

  • Danthi P, Pruijssers AJ, Berger AK, Holm GH, Zinkel SS, Dermody TS (2010a) Bid regulates the pathogenesis of neurotropic reovirus. PLoS Pathog 6:e1000980. doi:10.1371/journal.ppat.1000980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS (2010b) From touchdown to transcription: the reovirus cell entry pathway. Curr Top Microbiol Immunol 343:91–119. doi:10.1007/82_2010_32

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeBiasi RL, Clarke P, Meintzer SM, Jotte RM, Kleinschmidt-Demasters BK, Johnson GL, Tyler KL (2003) Reovirus-induced alteration in expression of apoptosis and DNA repair genes with potential roles in viral pathogenesis. J Virol 77(16):8934–8947

    Article  PubMed  PubMed Central  Google Scholar 

  • Dermody TS, Parker JS, Sherry B (2013) Orthoreoviruses. In Fields Virology. Knipe, DM and Howley, PM, editors. Philadelphia: Lippincott Williams & Wilkins. 1304–1346.

    Google Scholar 

  • Derrien M, Fields BN (1999) Reovirus type 3 clone 9 increases interleukin-1 level in the brain of neonatal, but not adult, mice. Virology 257:35–44

    Google Scholar 

  • Dionne KR, Galvin JM, Schittone SA, Clarke P, Tyler KL (2011) Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection. J Neurovirol 17(4):314–326. doi:10.1007/s13365-011-0038-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JD, Danthi P, Kendall EA, Ooms LS, Wetzel JD, Dermody TS (2012) Molecular determinants of proteolytic disassembly of the reovirus outer capsid. J Biol Chem 287(11):8029–8038. doi:10.1074/jbc.M111.334854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JD, Stencel-Baerenwald JE, Copeland CA, Rhoads JP, Brown JJ, Boyd KL, Atkinson JB, Dermody TS (2015) Diminished reovirus capsid stability alters disease pathogenesis and littermate transmission. PLoS Pathog 11(3):e1004693. doi:10.1371/journal.ppat.1004693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dryden KA, Wang G, Yeager M, Nibert ML, Coombs KM, Furlong DB, Fields BN, Baker TS (1993) Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122(5):1023–1041

    Article  CAS  PubMed  Google Scholar 

  • Duncan MR, Stanish SM, Cox DC (1978) Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol 28:444–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert DH, Deussing J, Peters C, Dermody TS (2002) Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 277:24609–24617

    Article  CAS  PubMed  Google Scholar 

  • Ferrazzano P, Chanana V, Uluc K, Fidan E, Akture E, Kintner DB, Cengiz P, Sun D (2013) Age-dependent microglial activation in immature brains after hypoxia- ischemia. CNS Neurol Disord Drug Targets 12(3):338–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleeton M, Contractor N, Leon F, Wetzel JD, Dermody TS, Kelsall B (2004) Peyer’s patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J Exp Med 200:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346. doi:10.1038/35053072

    Article  CAS  PubMed  Google Scholar 

  • Fournier AE, Gould GC, Liu BP, Strittmatter SM (2002) Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci 22(20):8876–8883

    CAS  PubMed  Google Scholar 

  • Fraser RDB, Furlong DB, Trus BL, Nibert ML, Fields BN, Steven AC (1990) Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions. J Virol 64(8):2990–3000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frierson JM, Pruijssers AJ, Konopka JL, Reiter DM, Abel TW, Stehle T, Dermody TS (2012) Utilization of sialylated glycans as coreceptors enhances the neurovirulence of serotype 3 reovirus. J Virol 86(24):13164–13173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlong DB, Nibert ML, Fields BN (1988) Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J Virol 62(1):246–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia AM, Fadel SA, Cao S, Sarzotti M (2000) T cell immunity in neonates. Immunol Res 22(2–3):177–190. doi:10.1385/IR:22:2-3:177

    Article  CAS  PubMed  Google Scholar 

  • George A, Kost SI, Witzleben CL et al (1990) Reovirus-induced liver disease in severe combined immunodeficient (SCID) mice: a model for the study of viral infection, pathogenesis, and clearance. J Exp Med 171:929–934

    Article  CAS  PubMed  Google Scholar 

  • Ginaldi L, De Martinis M, D’Ostilio A, Marini L, Loreto MF, Quaglino D (1999) Immunological changes in the elderly. Aging 11(5):281–286

    CAS  PubMed  Google Scholar 

  • Gollamudi R, Ghalib MH, Desai KK, Chaudhary I, Wong B, Einstein M, Coffey M, Gill GM, Mettinger K, Mariadason JM, Mani S, Goel S (2009) Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Invest New Drugs 28(5):641–649. doi:10.1007/s10637-009-9279-8

    Article  PubMed  Google Scholar 

  • Goody RJ, Hoyt CC, Tyler KL (2005) Reovirus infection of the CNS enhances iNOS expression in areas of virus-induced injury. Exp Neurol 195(2):379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goody RJ, Beckham JD, Rubtsova K, Tyler KL (2007) JAK-STAT signaling pathways are activated in the brain following reovirus infection. J Neurovirol 13(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielmi KM, Kirchner E, Holm GH, Stehle T, Dermody TS (2007) Reovirus binding determinants in junctional adhesion molecule-A. J Biol Chem 282:17930–17940

    Article  CAS  PubMed  Google Scholar 

  • Hansberger MW, Campbell JA, Danthi P, Arrate P, Pennington KN, Marcu KB, Ballard DW, Dermody TS (2007) IkB kinase subunits α and γ are required for activation of NF-kB and induction of apoptosis by mammalian reovirus. J Virol 81(3):1360–1371

    Article  CAS  PubMed  Google Scholar 

  • Hashiro G, Loh PC, Yau JT (1977) The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 54(4):307–315

    Article  CAS  PubMed  Google Scholar 

  • Hassan SA, Rabin ER, Melnick JL (1965) Reovirus myocarditis in mice: an electron microscopic, immunofluorescent, and virus assay study. Exp Mol Pathol 4:66–80

    Article  Google Scholar 

  • Hermann L, Embree J, Hazelton P, Wells B, Coombs RT (2004) Reovirus type 2 isolated from cerebrospinal fluid. Pediatr Infect Dis J 23(4):373–375

    Article  PubMed  Google Scholar 

  • Hingorani P, Zhang W, Lin J, Liu L, Guha C, Kolb EA (2011) Systemic administration of reovirus (Reolysin) inhibits growth of human sarcoma xenografts. Cancer 117(8):1764–1774. doi:10.1002/cncr.25741

    Article  CAS  PubMed  Google Scholar 

  • Holm GH, Zurney J, Tumilasci V, Danthi P, Hiscott J, Sherry B, Dermody TS (2007) Retinoic acid-inducible gene-I and interferon-β promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. J Biol Chem 282:21953–21961

    Article  CAS  PubMed  Google Scholar 

  • Holm GH, Pruijssers AJ, Li L, Danthi P, Sherry B, Dermody TS (2010) Interferon regulatory factor 3 attenuates reovirus myocarditis and contributes to viral clearance. J Virol 84(14):6900–6908. doi:10.1128/JVI.01742-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber AB, Schwab ME (2000) Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381(5–6):407–419. doi:10.1515/BC.2000.053

    CAS  PubMed  Google Scholar 

  • Hunt D, Mason MR, Campbell G, Coffin R, Anderson PN (2002) Nogo receptor mRNA expression in intact and regenerating CNS neurons. Mol Cell Neurosci 20(4):537–552

    Article  CAS  PubMed  Google Scholar 

  • Inamizu T, Chang MP, Makinodan T (1985) Influence of age on the production and regulation of interleukin-1 in mice. Immunology 55(3):447–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson PJ, Sveger T, Ahlfors K, Ekstrand J, Svensson L (1996) Reovirus type 1 associated with meningitis. Scand J Infect Dis 28(2):117–120

    Article  CAS  PubMed  Google Scholar 

  • Johnson EM, Doyle JD, Wetzel JD, McClung RP, Katunuma N, Chappell JD, Washington MK, Dermody TS (2009) Genetic and pharmacologic alteration of cathepsin expression influences reovirus pathogenesis. J Virol 83:9630–9640. doi:10.1128/JVI.01095-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keroack M, Fields BN (1986) Viral shedding and transmission between hosts determined by reovirus L2 gene. Science 232:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Kirchner E, Guglielmi KM, Strauss HM, Dermody TS, Stehle T (2008) Structure of reovirus σ1 in complex with its receptor junctional adhesion molecule-A. PLoS Pathog 4(12):e1000235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knowlton JJ, Dermody TS, Holm GH (2012) Apoptosis induced by mammalian reovirus is interferon-beta-independent and enhanced by IRF-3- and NF-kB-dependent expression of Noxa. J Virol 86:1650–1660. doi:10.1128/JVI.05924-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kominsky DJ, Bickel RJ, Tyler KL (2002a) Reovirus-induced apoptosis requires both death receptor- and mitochondrial-mediated caspase-dependent pathways of cell death. Cell Death Differ 9(9):926–933

    Article  CAS  PubMed  Google Scholar 

  • Kominsky DJ, Bickel RJ, Tyler KL (2002b) Reovirus-induced apoptosis requires mitochondrial release of Smac/DIABLO and involves reduction of cellular inhibitor of apoptosis protein levels. J Virol 76(22):11414–11424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka-Anstadt JL, Mainou BA, Sutherland DM, Sekine Y, Strittmatter SM, Dermody TS (2014) The Nogo receptor “NgR1” mediates infection by mammalian reovirus. Cell Host Microbe 15(6):681–691. doi:10.1016/j.chom.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornecki E, Walkowiak B, Naik UP, Ehrlich YH (1990) Activation of human platelets by a stimulatory monoclonal antibody. J Biol Chem 265(17):10042–10048

    CAS  PubMed  Google Scholar 

  • Kumar S, Dick EJ Jr, Reddy BY, Yang A, Mubiru J, Hubbard GB, Owston MA (2014) Reovirus-associated meningoencephalomyelitis in baboons. Vet Pathol 51(3):641–650. doi:10.1177/0300985813497487

    Article  CAS  PubMed  Google Scholar 

  • Lai CM, Boehme KW, Pruijssers AJ, Parekh VV, Van Kaer L, Parkos CA, Dermody TS (2014) Endothelial JAM-A promotes reovirus viremia and bloodstream dissemination. J Infect Dis 211(3):383–393. doi:10.1093/infdis/jiu476

    Article  PubMed  PubMed Central  Google Scholar 

  • Leland MM, Hubbard GB, Sentmore HT 3rd, Soike KF, Hilliard JK (2000) Outbreak of Orthoreovirus-induced meningoencephalomyelitis in baboons. Comp Med 50(2):199–205

    CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budhardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Ponchet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113:2363–2374

    CAS  PubMed  Google Scholar 

  • Lynch M, Lee B, Azimi P, Gentsch J, Glaser C, Gilliam S, Chang HG, Ward R, Glass RI (2001) Rotavirus and central nervous system symptoms: cause or contaminant? Case reports and review. Clin Infect Dis 33(7):932–938

    Article  CAS  PubMed  Google Scholar 

  • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142(1):117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin MJ, Warner A, Fields BN (1994) A pathway for entry of reoviruses into the host through M cells of the respiratory tract. J Exp Med 180(4):1523–1527

    Article  CAS  PubMed  Google Scholar 

  • Morin MJ, Warner A, Fields BN (1996) Reovirus infection in rat lungs as a model to study the pathogenesis of viral pneumonia. J Virol 70(1):541–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison LA, Sidman RL, Fields BN (1991) Direct spread of reovirus from the intestinal lumen to the central nervous system through vagal autonomic nerve fibers. Proc Natl Acad Sci U S A 88:3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibert ML, Fields BN (1992) A carboxy-terminal fragment of protein μ1/μ1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol 66:6408–6418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nibert ML, Schiff LA, Fields BN (1991) Mammalian reoviruses contain a myristoylated structural protein. J Virol 65:1960–1967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nibert ML, Odegard AL, Agosto MA, Chandran K, Schiff LA (2005) Putative autocleavage of reovirus μ1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J Mol Biol 345(3):461–474

    Article  CAS  PubMed  Google Scholar 

  • Oberhaus SM, Smith RL, Clayton GH, Dermody TS, Tyler KL (1997) Reovirus infection and tissue injury in the mouse central nervous system are associated with apoptosis. J Virol 71(3):2100–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odegard AL, Chandran K, Zhang X, Parker JS, Baker TS, Nibert ML (2004) Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78(16):8732–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell SM, Hansberger MW, Connolly JL, Chappell JD, Watson MJ, Pierce JM, Wetzel JD, Han W, Barton ES, Forrest JC, Valyi-Nagy T, Yull FE, Blackwell TS, Rottman JN, Sherry B, Dermody TS (2005) Organ-specific roles for transcription factor NF-kB in reovirus-induced apoptosis and disease. J Clin Invest 115(9):2341–2350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Donnell SM, Holm GH, Pierce JM, Tian B, Watson MJ, Chari RS, Ballard DW, Brasier AR, Dermody TS (2006) Identification of an NF-kB-dependent gene network in cells infected by mammalian reovirus. J Virol 80:1077–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pott J, Stockinger S, Torow N, Smoczek A, Lindner C, McInerney G, Backhed F, Baumann U, Pabst O, Bleich A, Hornef MW (2012) Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog 8(5):e1002670. doi:10.1371/journal.ppat.1002670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruijssers AJ, Hengel H, Abel TW, Dermody TS (2013) Apoptosis induction influences reovirus replication and virulence in newborn mice. J Virol 87(23):12980–12989. doi:10.1128/JVI.01931-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Cai D, Filbin MT (2000) Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29(2):166–174

    Article  CAS  PubMed  Google Scholar 

  • Ramig RF, Cross RK, Fields BN (1977) Genome RNAs and polypeptides of reovirus serotypes 1, 2, and 3. J Virol 22(3):726–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 Å resolution. Nature 404(6781):960–967

    Article  CAS  PubMed  Google Scholar 

  • Reiss K, Stencel JE, Liu Y, Blaum BS, Reiter DM, Feizi T, Dermody TS, Stehle T (2012) The GM2 glycan serves as a functional co-receptor for serotype 1 reovirus. PLoS Pathog 8(12):e1003078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter DM, Frierson JM, Halvorson EE, Kobayashi T, Dermody TS, Stehle T (2011) Crystal structure of reovirus attachment protein sigma1 in complex with sialylated oligosaccharides. PLoS Pathog 7(8):e1002166. doi:10.1371/journal.ppat.1002166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson-Burns SM, Tyler KL (2004) Regional differences in viral growth and central nervous system injury correlate with apoptosis. J Virol 78(10):5466–5475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson-Burns SM, Kominsky DJ, Tyler KL (2002) Reovirus-induced neuronal apoptosis is mediated by caspase 3 and is associated with the activation of death receptors. J Neurovirol 8(5):365–380

    Article  CAS  PubMed  Google Scholar 

  • Rosen L (1962) Reoviruses in animals other than man. Ann N Y Acad Sci 101:461–465

    Article  CAS  PubMed  Google Scholar 

  • Rosen L, Hovis JF, Mastrota FM, Bell JA, Huebner RJ (1960) Observations on a newly recognized virus (Abney) of the reovirus family. Am J Hyg 71:258–265

    CAS  PubMed  Google Scholar 

  • Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80(4–5):224–232. doi:10.1016/j.brainresbull.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  • Rubin DH (1987) Reovirus serotype 1 binds to the basolateral membrane of intestinal epithelial cells. Microb Pathog 3:215–220

    Article  CAS  PubMed  Google Scholar 

  • Sabin AB (1959) Reoviruses: a new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described. Science 130:1387–1389

    Article  CAS  PubMed  Google Scholar 

  • Schumacher RF, Forster J (1999) The CNS symptoms of rotavirus infections under the age of two. Klin Paediatr 211(2):61–64. doi:10.1055/s-2008-1043766

    Article  CAS  Google Scholar 

  • Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B, Young NS, Maciejewski JP (1997) Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-alpha in chronic myelogenous leukemia. Blood 89(3):957–964

    CAS  PubMed  Google Scholar 

  • Shatkin AJ, Sipe JD, Loh PC (1968) Separation of 10 reovirus genome segments by polyacrylamide gel electrophoresis. J Virol 12:986–991

    Google Scholar 

  • Sherry B, Schoen FJ, Wenske E, Fields BN (1989) Derivation and characterization of an efficiently myocarditic reovirus variant. J Virol 63:4840–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherry B, Torres J, Blum MA (1998) Reovirus induction of and sensitivity to beta interferon in cardiac myocyte cultures correlate with induction of myocarditis and are determined by viral core proteins. J Virol 72(2):1314–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein SC, Astell C, Levin DH, Schonberg M, Acs G (1972) The mechanism of reovirus uncoating and gene activation in vivo. Virology 47(3):797–806

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Schmechel SC, Raghavan A, Abelson M, Reilly C, Katze MG, Kaufman RJ, Bohjanen PR, Schiff LA (2006) Reovirus induces and benefits from an integrated cellular stress response. J Virol 80(4):2019–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stangl E, Aschauer W, Zahringer J, Hubner G (1987) Reovirus myocarditis. Eur Heart J. 8(Suppl. J):407–409

    Google Scholar 

  • Stencel-Baerenwald J, Reiss K, Blaum BS, Colvin D, Li XN, Abel T, Boyd K, Stehle T, Dermody TS (2015) Glycan engagement dictates hydrocephalus induction by serotype 1 reovirus. MBio 6(2):e02356. doi:10.1128/mBio.02356-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17(12):3351–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturzenbecker LJ, Nibert ML, Furlong DB, Fields BN (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61(8):2351–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu M, Powers ML, Weiner HL (1983) Age-dependent susceptibility to reovirus type 3 encephalitis: role of viral and host factors. Ann Neurol 13:602–607

    Article  CAS  PubMed  Google Scholar 

  • Tessitore C, Brunjes PC (1988) A comparative study of myelination in precocial and altricial murid rodents. Brain Res 471(1):139–147

    Article  CAS  PubMed  Google Scholar 

  • Thirukkumaran CM, Shi ZQ, Luider J, Kopciuk K, Gao H, Bahlis N, Neri P, Pho M, Stewart D, Mansoor A, Morris DG (2013) Reovirus modulates autophagy during oncolysis of multiple myeloma. Autophagy 9(3):413–414. doi:10.4161/auto.22867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tower DB, Young OM (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 20(2):269–278

    Article  CAS  PubMed  Google Scholar 

  • Tyler KL (1998) Pathogenesis of reovirus infections of the central nervous system. Curr Top Microbiol Immunol 233(Pt 2):93–124

    CAS  PubMed  Google Scholar 

  • Tyler KL, Fields BN (1996) Pathogenesis of viral infections. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 3rd edn. Lippincott-Raven Press, Philadelphia, pp 173–218

    Google Scholar 

  • Tyler KL, McPhee DA, Fields BN (1986) Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science 233(4765):770–774

    Article  CAS  PubMed  Google Scholar 

  • Tyler KL, Barton ES, Ibach ML, Robinson C, Valyi-Nagy T, Campbell JA, Clarke P, O’Donnell SM, Wetzel JD, Dermody TS (2004) Isolation and molecular characterization of a novel type 3 reovirus from a child with meningitis. J Infect Dis 189:1664–1675

    Article  CAS  PubMed  Google Scholar 

  • Tyler KL, Leser JS, Phang TL, Clarke P (2010) Gene expression in the brain during reovirus encephalitis. J Neurovirol 16(1):56–71. doi:10.3109/13550280903586394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virgin HW, Tyler KL (1991) Role of immune cells in protection against and control of reovirus infection in neonatal mice. J Virol 65:5157–5164

    PubMed  PubMed Central  Google Scholar 

  • Virgin HW, Tyler KL, Dermody TS (1997) Reovirus. In: Nathanson N (ed) Viral pathogenesis. Lippincott-Raven, New York, pp 669–699

    Google Scholar 

  • Weber C, Fraemohs L, Dejana E (2007) The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7(6):467–477

    Article  CAS  PubMed  Google Scholar 

  • Weiner HL, Drayna D, Averill DR Jr, Fields BN (1977) Molecular basis of reovirus virulence: role of the S1 gene. Proc Natl Acad Sci U S A 74(12):5744–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner HL, Powers ML, Fields BN (1980) Absolute linkage of virulence and central nervous system tropism of reoviruses to viral hemagglutinin. J Infect Dis 141(5):609–616

    Article  CAS  PubMed  Google Scholar 

  • Wolf JL, Cudor G, Blacklow NR, Dambrauskas R, Trier JS (1981) Susceptibility of mice to rotavirus infection: effects of age and administration of corticosteroids. Infect Immun 33:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan XD, Parent KN, Goodman RP, Tang JH, Shou JY, Nibert ML, Duncan R, Baker TS (2011) Virion structure of baboon reovirus, a fusogenic orthoreovirus that lacks an adhesion fiber. J Virol 85(15):7483–7495. doi:10.1128/Jvi.00729-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea J. Pruijssers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pruijssers, A.J., Dermody, T.S. (2016). Reovirus. In: Reiss, C. (eds) Neurotropic Viral Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-33133-1_14

Download citation

Publish with us

Policies and ethics