Skip to main content

Clinical Verification of Hearing Aid Performance

  • Chapter
  • First Online:
Hearing Aids

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 56))

Abstract

The general goal of providing amplification is to improve functional auditory capacity and restore good communication skills. Amplification should restore the audibility of soft sounds, provide improved intelligibility of speech at conversational listening levels, and ensure that intense sounds are not amplified to an uncomfortably loud level. There are several prescription methods that provide frequency-specific target values for soft, conversational, and intense sounds. Despite differences in the target values, no validated prescription method has been clearly shown to be superior to any of the other methods in terms of patient benefit (e.g., greater satisfaction, less residual disability). However, clinical studies have clearly shown that when a well-researched prescriptive approach is used and appropriate gain is delivered across frequencies, speech intelligibility is enhanced, and there is improved patient benefit and satisfaction. There is also irrefutable evidence that the audiologist can improve the match to the prescription target values using a probe microphone placed within the patient’s ear canal. As a result, carefully conducted verification is an essential component of long-term success with amplification. The most recent generation of prescription methods provides a degree of personalization to the target values beyond that associated with hearing threshold levels. However, there is an urgent clinical need to address the wide range of clinical outcomes that occur in hearing aid users with apparently similar characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aazh, H., & Moore, B. C. J. (2007). The value of routine real ear measurements of the gain of digital hearing aids. Journal of the American Academy of Audiology, 18, 653–664.

    Article  PubMed  Google Scholar 

  • Aazh, H., Moore, B. C. J., & Prasher, D. (2012a). Real ear measurement methods for open fit hearing aids: Modified pressure concurrent equalisation (MPCE) versus modified pressure stored equalisation (MPSE). International Journal of Audiology, 51, 103–107.

    Article  PubMed  Google Scholar 

  • Aazh, H., Moore, B. C. J., & Prasher, D. (2012b). The accuracy of matching target insertion gains with open-fit hearing aids. American Journal of Audiology, 21, 175–180.

    Article  PubMed  Google Scholar 

  • Abrams, H. B., Chisholm, T. H., Mcmanus, M., & McArdle, R. (2012). Initial-fit approach versus verified prescription: comparing self-perceived hearing aid benefit. Journal of the American Academy of Audiology, 23, 768–778.

    Google Scholar 

  • ANSI (American National Standards Institute). (1969). ANSI S3.5. Calculation of the articulation index. New York: American National Standards Institute.

    Google Scholar 

  • ANSI (American National Standards Institute). (1997). ANSI S3.5. Methods for calculation of the speech intelligibility index. New York: American National Standards Institute.

    Google Scholar 

  • ANSI (American National Standards Institute). (2003). ANSI S3.46. Methods of measurement of real-ear performance characteristics of hearing aids. New York: American National Standards Institute.

    Google Scholar 

  • Baer, T., Moore, B. C. J., & Kluk, K. (2002). Effects of low pass filtering on the intelligibility of speech in noise for people with and without dead regions at high frequencies. The Journal of the Acoustical Society of America, 112, 1133–1144.

    Article  PubMed  Google Scholar 

  • Bagatto, M., & Scollie, S. (2011). Current approaches to the fitting of amplification to infants and young children. In R. Seewald & A. M. Tharpe (Eds.), Comprehensive handbook of paediatric audiology (pp. 527–552). San Diego: Plural Publishing.

    Google Scholar 

  • Bagatto, M. P., Scollie, S. D., Seewald, R. C., Moodie, K. S., & Hoover, B. M. (2002). Real-ear-to-coupler difference predictions as a function of age for two coupling procedures. Journal of the American Academy of Audiology, 13, 407–415.

    PubMed  Google Scholar 

  • Bagatto, M. P., Moodie, S. T., Malandrion, A. C., Richert, F. M., Clench, D. A., & Scollie, S. D. (2011). The University of Western Ontario pediatric audiological monitoring protocol (UWO PedAMP). Trends in Amplification, 15, 57–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger, K. W., Hagberg, E. N., & Rane, R. L. (1979). Determining hearing aid gain. Hearing Instruments, 30, 26–44.

    Google Scholar 

  • Brennan, M., & McCreery, R. (2014). SHARP updates enable audibility estimates with nonlinear frequency compression. The Hearing Journal, 67, 14–18.

    Article  Google Scholar 

  • Byrne, D. (1981). Selecting amplification: Some psychoacoustic considerations. In F. H. Bess, B. A. Freeman, & J. S. Sinclair (Eds.), Amplification in education (pp. 261–285). Washington, DC: Alexander Graham Bell Association for the Deaf.

    Google Scholar 

  • Byrne, D., & Tonnison, W. (1976). Selecting the gain of hearing aids for persons with sensorineural hearing impairments. Scandinavian Audiology, 5, 51–59.

    Article  Google Scholar 

  • Byrne, D., & Dillon, H. (1986). The National Acoustics Laboratories’ (NAL) new procedure for selecting gain and frequency response of a hearing aid. Ear and Hearing, 7, 257–265.

    Article  CAS  PubMed  Google Scholar 

  • Byrne, D., Parkinson, A., & Newall, P. (1990). Hearing aid gain and frequency response requirements for the severely/profoundly hearing impaired. Ear and Hearing, 11, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Byrne, D., Dillon, H., Tran, K., Arlinger, S., Wilbraham, K., et al. (1994). An international comparison of long-term average speech spectra. The Journal of the Acoustical Society of America, 96, 2108–2120.

    Article  Google Scholar 

  • Byrne, D., Dillon, H., Ching, T., Katsch, R., & Keidser, G. (2001). NAL-NL1 procedure for fitting non-linear hearing aids: Characteristics and comparisons with other procedures. Journal of the American Academy of Audiology, 12, 31–51.

    Google Scholar 

  • Chalupper, J., Junius, D., & Powers T. (2009). Algorithm lets users train aid to optimize compression, frequency shape and gain. The Hearing Journal, 62, 26–33.

    Article  Google Scholar 

  • Ching, T. Y. C., Newall, P., & Wigney, D. (1997). Comparison of severely and profoundly hearing-impaired children’s amplification preferences with the NAL-RP and the DSL 3.0 prescriptions. International Journal of Audiology, 26, 219–222.

    Article  CAS  Google Scholar 

  • Ching, T. Y. C., Dillon, H., & Byrne, D. (1998). Speech recognition of hearing-impaired listeners: Predictions from audibility and the limited role of high-frequency amplification. The Journal of the Acoustical Society of America, 103, 1128–1140.

    Article  CAS  PubMed  Google Scholar 

  • Ching, T. Y. C., Scollie, S. D., Dillon, H., & Seewald, R. (2010a). A cross-over, double-blind comparison of the NAL-NL1 and the DSL v4.1 prescriptions for children with mild to moderately severe hearing loss. International Journal of Audiology, 49 (Suppl 1), S4–S15.

    Article  PubMed  Google Scholar 

  • Ching, T. Y. C., Scollie, S. D., Dillon, H., & Seewald, R. Britton, L., & Steinberg, J. (2010b). Prescribed real-ear and achieved real-ear differences in children’s hearing aids adjusted according to the NAL-NL1 and the DSL v4.1 prescriptions. International Journal of Audiology, 49 (S1), S16–S25.

    Google Scholar 

  • Ching, T. Y. C., Scollie, S. D., Dillon, H., Seewald, R., Britton, L., et al. (2010c). Evaluation of the NAL-NL1 and the DSL v4.1 prescriptions for children: Paired-comparison judgments and functional performance ratings. International Journal of Audiology, 49 (Suppl. 1), S35–S48.

    Google Scholar 

  • Cornelisse, L. E., Gagne, J., & Seewald, R. (1991). Ear level recordings of the long-term average spectrum of speech. Ear and Hearing, 12, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Cornelisse, L. E., Seewald, R. C., & Jamieson, D. G. (1995). The input/output formula: A theoretical approach to the fitting of personal amplification systems. The Journal of the Acoustical Society of America, 97, 1854–1864.

    Article  CAS  PubMed  Google Scholar 

  • Cox, R., & Alexander, G. (1990). Evaluation of an in-situ probe-microphone method for hearing aid fitting verification. Ear and Hearing, 11, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Cox, R., & Alexander, G. C. (1995). The abbreviated profile of hearing aid benefit. Ear and Hearing, 16, 176–186.

    Article  CAS  PubMed  Google Scholar 

  • Dawes, P., Powell, S., & Munro, K. J. (2011). The placebo effect and the influence of participant expectation on outcome of hearing aid trials. Ear and Hearing, 32, 767–774.

    Article  PubMed  Google Scholar 

  • Dawes, P., Hopkins, R., & Munro, K. J. (2013). Placebo effects in hearing aid trials are reliable. International Journal of Audiology, 52, 472–477.

    Article  PubMed  Google Scholar 

  • DeVos, A. W. (1968). The fitting of hearing aids for babies. International Audiology, 7, 136–141.

    Article  Google Scholar 

  • Dillon, H. (1999). NAL-NL1: A new prescriptive fitting procedure for non-linear hearing aids. The Hearing Journal, 52, 10–16.

    Article  Google Scholar 

  • Dillon, H. (2012). Hearing Aids, 2nd ed. Australia: Boomerang Press.

    Google Scholar 

  • Dillon, H., & Storey, L. (1998). The National Acoustic Laboratories’ procedure for selecting the saturation sound pressure level of hearing aids: Theoretical derivation. Ear and Hearing, 19, 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Dillon, H., Keidser, G., Ching, T. Y. C., Flax, M., & Brewer, S. (1999). The NAL-NL2 prescription procedure. Phonak Focus 40. Stäfa, Switzerland: Phonak AG.

    Google Scholar 

  • Dirks, D. D., & Kincaid, G. (1987). Basic acoustic considerations of ear canal probe measurements. Ear and Hearing, 8, S60–S67.

    Article  Google Scholar 

  • Dirks, D. D., Ahlstrom, J. B., & Einsenberg, L. S. (1996). Comparison of probe insertion methods on estimates of ear canal SPL. Journal of the American Academy of Audiology, 7, 31–37.

    CAS  PubMed  Google Scholar 

  • Erber, N. (1973). Body-baffle effects and real-ear effects in the selection of hearing aids for deaf children. Journal of Speech and Hearing Disorders, 38, 224–231.

    Article  CAS  PubMed  Google Scholar 

  • Feigin, J., Nelson Barlow, N., & Stelmachowicz, P. (1990). The effect of reference microphone placement on sound pressure levels at an ear level hearing aid microphone. Ear and Hearing, 11, 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Feigin, J. A., Kopun, J. G., Stelmachowicz, P. G., & Gorga, M. P. (1989). Probe-tube microphone measures of ear canal sound pressure levels in infants and children. Ear and Hearing, 10, 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Florentine, M., Buus, S., Scharf, B., & Zwicker, E. (1980). Frequency selectivity in normally-hearing and hearing-impaired observers. Journal of Speech and Hearing Research, 23, 643–669.

    Google Scholar 

  • Gengel, R.W., Pascoe, D., & Shore, I. (1971). A frequency-response procedure for evaluating and selecting hearing aids for severely hearing-impaired children. Journal of Speech and Hearing Disorders, 36, 341–353.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, D. B., & Mueller, H. G. (1992). Procedural considerations in probe-microphone measurements. In H. G. Mueller, D. B. Hawkins, & J. L. Northern, J. L. (Eds.), Probe microphone measurements (pp. 67–89). California: Singular.

    Google Scholar 

  • Holube, I., Fredelake, S., Vlaming, M., & Kollmeier, B. (2010). Development and analysis of an International Speech Test Signal (ISTS). International Journal of Audiology, 20, 891–903.

    Article  Google Scholar 

  • Ickes, M., Hawkins, D., & Cooper, W. (1991). Effect of loudspeaker azimuth and reference microphone location on ear canal probe tube microphone measurements. Journal of the American Academy of Audiology, 2, 156–163.

    CAS  PubMed  Google Scholar 

  • IEC (International Electrotechnical Commission). (2001). IEC 61669. Electroacoustics: Equipment for the measurement of real-ear acoustical characteristics of hearing aids. Geneva: International Electrotechnical Commission.

    Google Scholar 

  • Johnson, E. E. (2012). Same or different: Comparing the latest NAL and DSL prescriptive targets. AudiologyOnline. Article 12769. Retrieved from http://www.audiologyonline.com (Accessed January 27, 2016).

  • Johnson, E., & Dillon, H. (2011). A comparison of gain for adults from generic hearing aid prescriptive methods: Impacts on predicted loudness, frequency bandwidth, and speech intelligibility. Journal of the American Academy of Audiology, 22, 441–459.

    Article  PubMed  Google Scholar 

  • Keidser, G., & Dillon, H. (2006). What's new in prescriptive fittings Down Under? In R. Seewald (Ed.), Hearing care for adults 2006 (pp. 133–142). Stäfa, Switzerland: Phonak AG.

    Google Scholar 

  • Keidser, G., & Alamudi, K. (2013). Real-life efficacy and reliability of training a hearing aid. Ear and Hearing, 34, 619–629.

    Article  PubMed  Google Scholar 

  • Keidser, G., Brew, C., & Peck, A. (2003). Proprietary fitting algorithms compared with one another and with generic formulas. The Hearing Journal, 56, 28–38.

    Article  Google Scholar 

  • Keidsler, G., O’Brien, A., Carter, L., McLelland, M., & Yeend, I. (2008). Variations in preferred gain with experience for hearing aid users. International Journal of Audiology, 47, 621–635.

    Article  Google Scholar 

  • Keidser, G., Dillon, H., Carter, L., & O’Brien, A. (2012). NAL-NL2 empirical adjustments. Trends in Amplification, 16, 211–223.

    PubMed  PubMed Central  Google Scholar 

  • Killion, M. C., & Monser, E. L. (1980). CORFIG: Coupler response for flat insertion gain. In G. A. Studebaker & I. Hochberg (Eds.), Acoustical factors affecting hearing aid response (pp. 149–168). Baltimore: University Park Press.

    Google Scholar 

  • Killion, M. C., & Revit, L. J. (1987). Insertion gain repeatability versus loudspeaker location: You want me to put my loudspeaker where? Ear and Hearing, 8, 68S–73S.

    Article  CAS  PubMed  Google Scholar 

  • Killion, M. C., & Mueller, H. G. (2010). Twenty years later: A new count-the-dots method. The Hearing Journal, 63, 10–17.

    Article  Google Scholar 

  • Knudsen, V. O., & Jones, I. H. (1935). Artificial aids to hearing. The Laryyngoscope, 45, 48–69.

    Google Scholar 

  • Kochkin, S., Beck, D. L., Christensen, L. A., Compton-Conley, C., Fligor, B. J., et al. (2010). MarkeTrak VIII: The impact of the hearing health care professional on hearing aid user success. The Hearing Review, 17, 12–34.

    Google Scholar 

  • Leavitt, R. J., & Flexer, C. (2012). The importance of audibility in successful amplification of hearing loss. The Hearing Review, 19, 20–23.

    Google Scholar 

  • Libby, E. R. (1986). The 1/3–2/3 insertion gain hearing aid selection guide. Hearing Instruments, 37, 27–28.

    Google Scholar 

  • Lybarger, S. F. (1944). U.S. Patent Application SN 543, 278.

    Google Scholar 

  • Magnusson, L., Karlsson, M., & Leijon, A. (2001). Predicted and measured speech recognition performance in noise with linear amplification. Ear and Hearing, 22, 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Malicka, A. N., Munro, K. J., Baer, T., Baker, R. J., & Moore, B. C. J. (2013). The effect of low-pass filtering on identification of nonsense syllables in quiet by school-age children with and without cochlear dead regions. Ear and Hearing, 34, 458–469.

    Article  PubMed  Google Scholar 

  • Marriage, J., Moore, B. C. J., & Alcantara, J. I. (2004). Comparison of three procedures for initial fitting of compression hearing aids. III: Inexperienced versus experienced users. International Journal of Audiology, 43, 198–210.

    Google Scholar 

  • Mason, D. I., & Popelka, G. R. (1986). Comparison of hearing aid gain using functional, coupler and probe-tube measurements. Journal of Speech and Hearing Research, 29, 218–226.

    Article  CAS  PubMed  Google Scholar 

  • McCandless, G. A., & Lyregaard, P. E. (1983). Prescription of gain and output (POGO) for hearing aids. Hearing Instruments, 34, 16–21.

    Google Scholar 

  • Moore, B. C. J. (2000). Use of a loudness model for hearing aid fitting. IV. Fitting hearing aids with multi-channel compression so as to restore ‘normal’ loudness for speech at different levels. British Journal of Audiology, 34, 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J. (2004). DRs in the cochlea: Conceptual foundations, diagnosis, and clinical applications. Ear and Hearing, 25, 98–116.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J. (2007). Cochlear hearing loss: Physiological, psychological and technical issues, 2nd ed. Chichester: John Wiley & Sons.

    Book  Google Scholar 

  • Moore, B. C. J., & Sek, A. (2013). Comparison of the CAM2 and NAL-NL2 hearing-aid fitting methods. Ear and Hearing, 34, 83–95.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Alcantara, J. I., Stone, M. A., & Glasberg, B. R. (1999a). Use of a loudness model for hearing aid fitting. II. Hearing aids and multi-channel compression amplitude compression. British Journal of Audiology, 33, 157–170.

    Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., & Stone, M. A. (1999b). Use of a loudness model for hearing aid fitting. III. A general method for deriving initial fittings for hearing aids with multi-channel compression. British Journal of Audiology, 33, 241–258.

    Google Scholar 

  • Moore, B. C. J., Alcantara, J. I., & Marriage, J. (2001). Comparison of three procedures for initial fitting of compression hearing aids. I. Experienced users, fitted bilaterally. British Journal of Audiology, 35, 339–353.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., & Stone, M. A. (2010). Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2–HF. International Journal of Audiology, 49, 216–227.

    Article  PubMed  Google Scholar 

  • Mueller, H. G. (2001). Probe microphone measurements: 20 years of progress. Trends in Amplification, 5, 35–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, H. G. (2014a). Real-ear probe-microphone measures: 30 years of progress? AudiologyOnline, Article 12410. Retrieved from http://www.audiologyonline.com (Accessed January 27, 2016).

  • Mueller, H. G. (2014b). Trainable hearing aids: Friend or foe for the clinician? AudiologyOnline, Article 12774. Retrieved from http://www.audiologyonline.com (Accessed January 27, 2016).

  • Mueller, H. G., & Killion, M. (1990). An easy method for calculating the articulation index. The Hearing Journal, 43, 14–17.

    Google Scholar 

  • Mueller, H. G., & Ricketts, T. A. (2006). Open canal fittings: Ten take home tips. The Hearing Journal, 59, 24–39.

    Google Scholar 

  • Mueller, H. G., & Picou, E. M. (2010). Survey examines popularity of real-ear probe-microphone measures. The Hearing Journal, 63, 27–32.

    Article  Google Scholar 

  • Munro, K. J., & Hatton, N. (2000). Customized acoustic transform functions and their accuracy at predicting real-ear hearing aid performance. Ear and Hearing, 21, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Munro, K. J., & Salisbury, V. (2002). Is the real-ear-to-coupler difference independent of the measurement earphone? International Journal of Audiology, 41, 408–413.

    Article  PubMed  Google Scholar 

  • Munro, K. J., & Buttfield, L. (2005). Comparison of real-ear-to-coupler difference values in the right and left ear of adults using three earmould configurations. Ear and Hearing, 26, 290–298.

    Article  PubMed  Google Scholar 

  • Munro, K. J., & Toal, S. (2005). Measuring the RECD transfer function with an insert earphone and a hearing instrument: Are they the same? Ear and Hearing, 26, 27–34.

    Article  PubMed  Google Scholar 

  • Munro, K. J., & Howlin, E. M. (2010). Comparison of real-ear to coupler difference values in the right and left ear of hearing aid users. Ear and Hearing, 31, 146–150.

    Article  PubMed  Google Scholar 

  • Munro, K. J., Puri, R., Bird, J., & Smith, M. (2016). Using probe-microphones to improve the match to target gain and frequemncy response slope, as a function of earmould style, frequency, and input level. International Journal of Audiology, 55, 215–223.

    Google Scholar 

  • Palmer, C. (2012). Implementing a gain learning feature. AudiologyOnline, Article 11244. Retrieved from http://www.audiologyonline.com/ (Accessed January 27, 2016).

  • Pascoe, D. (1978). An approach to hearing aid selection. Hearing Instruments, 29, 36.

    Google Scholar 

  • Pascoe, D. (1988). Clinical measurements of the auditory dynamic range and their relation to formulas for hearing aid gain. In J. Jensen (Ed.), Hearing aid fitting: Theoretical and practical views. Proceedings of the 13th Danavox Symposium (pp. 129–152). Copenhagen: Danavox.

    Google Scholar 

  • Pearsons, K. S., Bennett, R. L., & Fidell, S. (1977). Speech levels in various noise environments. Report No. EPA-600/1-77-025. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Preminger, J. E., Neuman, A. C., & Cunningham, D. R. (2001). The selection and validation of output sound pressure level in multichannel hearing aids. Ear and Hearing, 22, 487–500.

    Article  CAS  PubMed  Google Scholar 

  • Ricketts, T. A., & Mueller, H. G. (2009). Whose NAL-NL1 fitting method are you using? The Hearing Journal, 62(8), 10–17.

    Article  Google Scholar 

  • Ross, M., & Seewald, R. C. (1988). Hearing aid selection and evaluation with young children. In F. H. Bess (Ed.), Hearing impairment in children (pp. 190–213). Timonium, MD: York Press.

    Google Scholar 

  • Scollie, S. D., Seewald, R. C., Moodie, K. S., & Dekok, K. (2000). Preferred listening levels of children who use hearing aids: Comparison to prescriptive targets. Journal of the American Academy of Audiology, 11, 230–238.

    CAS  PubMed  Google Scholar 

  • Scollie, S. D., Seewald, R., Cornelisse, L., Moodie, S., Bagatto, M., et al. (2005). The Desired Sensation Level multistage input/output algorithm. Trends in Amplification, 94, 159–197.

    Article  Google Scholar 

  • Scollie, S. D., Ching, T. Y., Seewald, R. C., Dillon, H, Britton, L., et al. (2010a). Children’s speech perception and loudness ratings when fitted with hearing aids using the DSL v4.1 and the NAL-NL1 prescriptions. International Journal of Audiology, 49 (S1), S26–S34.

    Article  PubMed  Google Scholar 

  • Scollie, S. D., Ching, T. Y. C., Seewald, R. C., Dillon, H., Britton, L., et al. (2010b). Children’s speech perception and loudness ratings of children when fitted with hearing aids using the DSL v.4.1 and NAL-NL1 prescriptions. International Journal of Audiology, 49 (Suppl. 1), S26–S34.

    Google Scholar 

  • Scollie, S. D., Ching, T. Y. C., Seewald, R. C., Dillon, H., Britton, L., et al. (2010c). Evaluation of the NAL-NL1 and DSL v4.1 prescriptions for children: Preferences in real world use. International Journal of Audiology, 49 (Suppl. 1), S49–S63.

    Article  PubMed  Google Scholar 

  • Seewald, R. C. (1995). The Desired Sensation Level (DSL) method for hearing aid fitting in infants and children. Phonak Focus 20. Stäfa, Switzerland: Phonak AG.

    Google Scholar 

  • Seewald, R. C., & Ross, M. (1988). Amplification for young hearing-impaired children. In M. Pollack (Ed.), Amplification for the hearing impaired, 3rd ed. (pp. 213–271). New York: Grune & Stratton.

    Google Scholar 

  • Seewald, R. C., Ross, M., & Spiro, M. K. (1985). Selecting amplification characteristics for young hearing-impaired children. Ear and Hearing, 6, 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Seewald, R., Stelmachowicz, P. G., & Ross, M. (1987). Selecting and verifying hearing aid performance characteristics for young children. Journal of the Academy of Rehabilitative Audiology, 20, 25–38.

    Google Scholar 

  • Seewald, R. C., Zelisko, D. L., Ramji, K., & Jamieson, D. G. (1991). DSL 3.0: A computer-assisted implementation of the Desired Sensation Level method for electroacoustic selection and fitting in children. London, ON: University of Western Ontario.

    Google Scholar 

  • Seewald, R. C., Moodie, K. S., Sinclair, S. T., & Cornelisse, L. E. (1996). Traditional and theoretical approaches to selecting amplification for infants and children. In F. H. Bess, J. S. Gravel, & A. M. Tharpe (Eds.), Amplification for children with auditory deficits (pp. 161–191). Nashville: Bill Wilkerson Center Press.

    Google Scholar 

  • Seewald, R. C., Moodie, K. S., Sinclair, S. T., & Scollie, S. D. (1999). Predictive validity of a procedure for pediatric hearing instrument fitting. American Journal of Audiology, 8, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Seewald, R. C., Moodie, S., Scollie, S., & Bagatto, M. (2005). The DSL method for paediatric hearing instrument fitting: Historical perspectives and current issues. Trends in Amplification, 9, 145–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seewald, R., Mills, J., Bagatto, M., Scollie, S., & Moodie, S. (2008). A comparison of manufacturer-specific prescriptive procedures for infants. The Hearing Journal, 61, 26–34.

    Article  Google Scholar 

  • Stelmachowicz, P. G., Kalberer, A., & Lewis, D. E. (1996). Situational hearing aid response profile (SHARP). In F. H. Bess, J. S. Gravel, & A. M. Tharpe (Eds.), Amplification for children with auditory deficits (pp. 193–213). Nashville: Bill Wilkerson Center Press.

    Google Scholar 

  • Stone, M. A., & Moore, B. C. J. (2004). Estimated variability of real-ear insertion response (REIR) due to loudspeaker type and placement. International Journal of Audiology, 43, 271–275.

    Article  PubMed  Google Scholar 

  • Storey, L., Dillon, H., Yeend., I., & Wigney, D. (1998). The National Acoustics Laboratories’ procedure for selecting the saturation sound pressure level of hearing aids: Experimental validation. Ear and Hearing, 19, 267–279.

    Google Scholar 

  • Turner, C. W., & Cummings, K. J. (1999). Speech audibility for listeners with high-frequency hearing loss. American Journal of Audiology, 8, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. H., & Bentler, R. A. (2012). Clinical measures of directivity: Assumption, accuracy, and reliability. Ear and Hearing, 33, 44–56.

    Article  CAS  PubMed  Google Scholar 

  • Zemplenyi, J., Gilman, S., & Dirks, D. (1985). Optical method for measurement of ear canal length. The Journal of the Acoustical Society of America, 78, 2146–2148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Kevin J. Munro is supported by the Manchester Biomedical Research Centre and the Greater Manchester Comprehensive Local Research Network.

Conflict of interest Kevin J. Munro declares that he has no conflict of interest.H. Gustav Mueller declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Munro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munro, K.J., Mueller, H.G. (2016). Clinical Verification of Hearing Aid Performance. In: Popelka, G., Moore, B., Fay, R., Popper, A. (eds) Hearing Aids. Springer Handbook of Auditory Research, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-33036-5_9

Download citation

Publish with us

Policies and ethics