Skip to main content

Exploring the Microbiology of the Deep Sea

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

In this chapter the current knowledge of the diversity of piezophiles isolated so far is reviewed. The isolated piezophiles originated from high-pressure environments such as the cold deep sea, hydrothermal vents, and crustal rocks. Several “stress” conditions can be experienced in these environments, in particular high hydrostatic pressure (HHP). Discoveries of abundant life in diverse high-pressure environments (deep biosphere) support the existence and an adaptation of life to HHP. At least 50 piezophilic and piezotolerant Bacteria and Archaea have been isolated from different deep-sea environments but these do not by far cover the large metabolic diversity of known microorganisms thriving in deep biospheres. The field of biology of piezophiles has suffered essentially from the requirements for high-pressure retaining sample containments and culturing laboratory equipment, which is technically complicated and expensive. Only a few prototypes of HHP bioreactors have been developed by a number of research groups and this could explain the limited number of piezophiles isolated up till now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alain K, Marteinsson VT, Miroshnichenko ML et al (2002) Marinitoga piezophila sp nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    CAS  PubMed  Google Scholar 

  • Alazard D, Dukan S, Urios A et al (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178

    Article  CAS  PubMed  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amrani A, Bergon A, Holota H et al (2014) Transcriptomics reveal several gene expression patterns in the Piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure. PLoS ONE 9(9):e106831

    Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim et Biophys Acta-Protein Struct Mol Enzymol 1595:367–381

    Article  CAS  Google Scholar 

  • Bartlett DH, Ferguson G, Valle G (2008) Adaptations of the psychrotolerant piezophile Photobacterium profundum strain SS9. High-Pressure Microbiol 319–337

    Google Scholar 

  • Bernhardt G, Jaenicke R, Lüdemann HD et al (1988) High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Env Microbiol 54:1258–1261

    CAS  Google Scholar 

  • Birrien JL, Zeng X, Jebbar M et al (2011) Pyrococcus yayanosii sp nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2831

    Article  CAS  PubMed  Google Scholar 

  • Bonch-Osmolovskaya EA (2008) Thermotogales. In Encyclopedia of Life Sciences (ELS). Wiley, Chichester

    Google Scholar 

  • Campanaro S, Vezzi A, Vitulo N et al (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genom 6:122

    Article  Google Scholar 

  • Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Evol Bacteriol 48(4):1181–1185

    Google Scholar 

  • Cao Y, Chastain RA, Eloe EA et al (2014) Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench. Appl Environ Microbiol 80:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cario A, Lormières F, Xiang X, Oger P (2015) High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Res Microbiol 166:710–716

    Article  CAS  PubMed  Google Scholar 

  • Certes A (1884) Sur la culture, a l’abri des germes atmospheriques, des eaux et des sediments rapportes par les expeditions du Travailleur et du Talisman; 1882–1883. Compt Rend Acad Sci 98:690–693

    Google Scholar 

  • Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112

    Article  CAS  PubMed  Google Scholar 

  • Ciobanu M-C, Burgaud G, Dufresne A et al (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380

    Article  PubMed  PubMed Central  Google Scholar 

  • Corliss JB, Ballard RD (1977) Oases of life in cold abyss. Nat Geogr 152:441–453

    Google Scholar 

  • DeLong EF (1997) Marine microbial diversity: the tip of the iceberg. Trends Biotechnol 15:203–207

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of the membrane-lipids of a deep-sea bacterium to changes in hydrostatic-pressure. Science 228:1101–1102

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  PubMed  Google Scholar 

  • Deming JW, Somers LK, Straube WL et al (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen-nov. Syst Appl Microbiol 10:152–160

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469

    Google Scholar 

  • Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 74:6298–6305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloe EA, Fadrosh DW, Novotny M et al (2011a) Going deeper: metagenome of a hadopelagic microbial community. PLoS ONE 6:e20388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloe EA, Malfatti F, Gutierrez J et al (2011b) Isolation and characterization of a psychropiezophilic alphaproteobacterium. Appl Environ Microbiol 77:8145–8153

    Article  PubMed  PubMed Central  Google Scholar 

  • Euzeby J (2013) List of prokaryotic names with standing in nomenclature-Genus. Staphylococcus. http://www.bacterio.cict.fr. Accessed April 2010

  • González JM, Kato C, Horikoshi K (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164

    Article  PubMed  Google Scholar 

  • Hammond P (1995) Described and estimated species numbers: an objective assessment of current knowledge. Microb Divers Ecosyst Funct 29–71

    Google Scholar 

  • Huber H, Thomm M, Knig H et al (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Article  Google Scholar 

  • Inagaki F, Hinrichs K-U, Kubo Y et al (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424

    Article  CAS  PubMed  Google Scholar 

  • Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Ann Rev Microbiol 38:487–514

    Article  CAS  Google Scholar 

  • Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 1–20

    Google Scholar 

  • Jones WJ, Leigh JA, Mayer F et al (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Kato C (2006) Handling of piezophilic microorganisms. Methods Microbiol 35:733–741

    Article  Google Scholar 

  • Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Qureshi MH (1999) Pressure response in deep-sea piezophilic bacteria. J Mol Microbiol Biotechnol 1:87–92

    CAS  PubMed  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9

    Article  Google Scholar 

  • Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Li L, Nogi Y et al (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khelaifia S, Fardeau ML, Pradel N et al (2011) Desulfovibrio piezophilus sp nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61:2706–2711

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355. doi:10.1128/AEM.00473-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’Haridon S, Jiang L, Alain K et al (2014) Kosmotoga pacifica sp. nov., a thermophilic chemoorganoheterotrophic bacterium isolated from an East Pacific hydrothermal sediment. Extremophiles 18:81–88

    Article  PubMed  Google Scholar 

  • Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10:631–640

    Article  CAS  PubMed  Google Scholar 

  • Lasken RS, McLean JS (2014) Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15:577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  PubMed  Google Scholar 

  • Lauro FM, Chastain RA, Blankenship LE et al (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-Zayas R, Novotny M, Podell S et al (2015) Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 81:8265–8276

    PubMed  PubMed Central  Google Scholar 

  • Lossouarn J, Nesbø CL, Mercier C et al (2015) “Ménage à trois”: a selfish genetic element uses a virus to propagate within Thermotogales. Environ Microbiol 17:3278–3288

    Article  CAS  PubMed  Google Scholar 

  • Marteinsson VT, Moulin P, Birrien J et al (1997) Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl Environ Microbiol 63:1230–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marteinsson VT, Reysenbach AL, Birrien JL, Prieur D (1999a) A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277–282

    Article  CAS  PubMed  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999b) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Bacteriol 49:351–359

    Article  Google Scholar 

  • Miller JF, Shah NN, Nelson CM et al (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 54:3039–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita R (1976) Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. Soc Gen Microbiol Symp Ser 17:279–298

    Google Scholar 

  • Nesbø CL, Bradnan DM, Adebusuyi A et al (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393

    Article  PubMed  Google Scholar 

  • Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3:71–77

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998b) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532

    CAS  PubMed  Google Scholar 

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2007) Psychromonas hadalis sp nov., a novel plezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol 57:1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809

    Article  PubMed  Google Scholar 

  • Park CB, Clark DS (2002) Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii. Appl Environ Microbiol 68:1458–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CB, Boonyaratanakornkit BB, Clark DS (2006) Toward the large scale cultivation of hyperthermophiles at high-temperature and high-pressure. Methods Microbiol 35:109–126

    Article  CAS  Google Scholar 

  • Parkes RJ, Sellek G, Webster G et al (2009) Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol 11:3140–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathom-Aree W, Stach JE, Ward AC et al (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  PubMed  Google Scholar 

  • Pradel N, Ji B, Gimenez G et al (2013) The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS ONE 8:e55130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieur D (1997) Microbiology of deep-sea hydrothermal vents. Trends Biotechnol 15:242–244. doi:10.1016/S0167-7799(97)01052-4

    Article  CAS  Google Scholar 

  • Prieur D, Marteinsson VT (1998) Prokaryotes living under elevated hydrostatic pressure. In Biotechnology of extremophiles. Springer, Heidelberg, pp 23–35

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  • Qureshi MH, Kato C, Horikoshi K (1998) Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. FEMS Microbiol Lett 161:301–309

    Article  CAS  Google Scholar 

  • Roussel EG, Bonavita M-AC, Querellou J et al (2008) Extending the sub-sea-floor biosphere. Science 320:1046

    Article  CAS  PubMed  Google Scholar 

  • Ruby E, Nealson K (1978) Seasonal changes in the species composition of luminous bacteria in nearshore seawater. Limnol Oceanogr 23:530–533

    Article  Google Scholar 

  • Simonato F, Campanaro S, Lauro FM et al (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4(1):9–17. PMID:10741832

    Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

    Article  CAS  PubMed  Google Scholar 

  • Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122 ℃ and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 31:10949–10954

    Article  Google Scholar 

  • Takai K, Miyazaki M, Hirayama H et al (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997

    Article  PubMed  Google Scholar 

  • Tamegai H, Kato C, Horikoshi K (1998) Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSS 12. J Biochem Mol Biol Biophys 1:213–220

    CAS  Google Scholar 

  • Tamegai H, Ota Y, Haga M et al (2011) Piezotolerance of the respiratory terminal oxidase activity of the piezophilic Shewanella violacea DSS12 as compared with non-piezophilic Shewanella species. Biosci Biotechnol Biochem 75:919–924

    Article  CAS  PubMed  Google Scholar 

  • Thrash JC, Temperton B, Swan BK et al (2014) Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–1451

    Article  PubMed  Google Scholar 

  • Toffin L, Bidault A, Pignet P et al (2004) Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54:1943–1949

    Article  CAS  PubMed  Google Scholar 

  • Usui K, Hiraki T, Kawamoto J et al (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta-Biomembr 1818:574–583

    Article  CAS  Google Scholar 

  • Vannier P, Michoud G, Oger P et al (2015) Genome expression of Thermococcus barophilus and Thermococcus kodakarensis in response to different hydrostatic pressure conditions. Res Microbiol 166:717–725

    Article  CAS  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M et al (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang J, Jian H et al. (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 3(4):e1937

    Google Scholar 

  • Welch TJ, Bartlett DH (1996) Isolation and characterization of the structural gene for OmpL, a pressure-regulated porin-like protein from the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 178:5027–5031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welch TJ, Bartlett DH (1998) Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol Microbiol 27:977–985

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirsen CO, Jannasch HW, Wakeham SG, Canuel EA (1987) Membranes lipids of a psychrophilic and barophilic deep-sea bacterium. Curr Microbiol 14:319–322

    Article  CAS  Google Scholar 

  • Xiao X, Wang P, Zeng X et al (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57:60–65

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Nogi Y, Kato C et al (2003a) Psychromonas profunda sp nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Nogi Y, Kato C et al (2003b) Moritella profunda sp nov and Moritella abyssi sp nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83:9542–9546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yayanos A, DeLong EF (1987) Deep-sea bacterial fitness to environmental temperatures and pressure. In: Jannasch HW, Marquis RE, Zimmerman AM (eds) Current perspectives in high pressure biology. Academic Press, Toronto, pp 17–32

    Google Scholar 

  • Yayanos AA, Dietz AS, Vanboxtel R (1979) Isolation of a deep sea barophilic bacterium and some of its growth-characteristics. Science 205:808–810

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA, Dietz AS, Vanboxtel R (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci USA 78:5212–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Zhang X, Jiang L et al (2013) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63:2155–2159

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Zhang Z, Li X et al (2015) Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:710–715

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sun Q, Zeng Z et al (2015a) Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 177:43–52

    Article  PubMed  Google Scholar 

  • Zhang Y, Li X, Bartlett DH, Xiao X (2015b) Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Curr Opin Biotechnol 33:157–164

    Article  PubMed  Google Scholar 

  • Zhao W, Xiao X (2015) Complete genome sequence of Thermococcus eurythermalis A501, a conditional piezophilic hyperthermophilic archaeon with a wide temperature range, isolated from an oil-immersed deep-sea hydrothermal chimney on Guaymas Basin. J Biotechnol 193:14–15

    Article  CAS  PubMed  Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jebbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jebbar, M., Vannier, P., Michoud, G., Marteinsson, V.T. (2016). Exploring the Microbiology of the Deep Sea. In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_8

Download citation

Publish with us

Policies and ethics