Skip to main content

New Approaches for Bringing the Uncultured into Culture

  • Chapter
  • First Online:
Book cover The Marine Microbiome

Abstract

It took more than 23 years to propose a defined medium to culture “Pelagibacter ubique” HTCC1062, one of the most dominant clades in the ocean. Although it was first identified in the 1990s by culture-independent approaches based on rRNA gene cloning and sequencing, an artificial seawater enrichment medium has only recently been proposed for this isolate. This success story is a result of the improvement of culture methods, better sensitivity of growth detection, and knowledge of metabolic activities predicted from genome sequences. The new approaches now offer a fraction of 14–40 % that can be cultured. From an optimistic point of view, all uncultured marine microorganisms could now simply be regarded as “not yet cultured”. Culturing is no longer an “old fashioned” technique but an innovative and fast-moving area of research. Technological developments include micro-engineering of ichips, manipulation of single cells, community culture, high-throughput culturing (HTC) processes, and new methods for low biomass detection or targeting specific microorganisms. Culture remains a prerequisite for microbiological studies, as we need to grow microorganisms in the laboratory in order to identify their functions and validate hypotheses deduced from their genomes. The development, improvement, and combination of innovative culture techniques based on information deduced from omics will undoubtedly lead to the isolation and study of presently uncultured marine microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akselband Y, Cabral C, Castor TP, Chikarmane HM, McGrath P (2006) Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting. J Exp Mar Biol Ecol 329(2):196–205

    Article  CAS  Google Scholar 

  • Andrews JS, Mason VP, Thompson IP, Stephens GM, Markx GH (2006) Construction of artificially structured microbial consortia (ASMC) using dielectrophoresis: Examining bacterial interactions via metabolic intermediates within environmental biofilms. J Microbiol Methods 64(1):96–106

    Article  CAS  PubMed  Google Scholar 

  • Aoi Y, Kinoshita T, Hata T, Ohta H, Obokata H, Tsuneda S (2009) Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl Environ Microbiol 75(11):3826–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlt J, Garces-Chavez V, Sibbett W, Dholakia K (2001) Optical micromanipulation using a Bessel light beam. Optics Commun 197:239–245

    Google Scholar 

  • Ashkin A (1970) Acceleration and Trapping of Particles by Radiation Pressure. Phys Rev Lett 24:156–159

    Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235(4795):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  CAS  PubMed  Google Scholar 

  • Azam A, Laflin K, Jamal M, Fernandes R, Gracias D (2011) Self-folding micropatterned polymeric containers. Biomed Microdevices 13(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Balagadde FK, You LC, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140

    Article  CAS  PubMed  Google Scholar 

  • Banerjee AG, Pomerance A, Losert W, Gupta SK (2010) Developing a stochastic dynamic programming framework for optical tweezer-based automated particle transport operations. IEEE Trans Autom Sci Eng 7(2):218–227

    Article  Google Scholar 

  • Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2009) An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol Ecol 68(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37(3):407–427

    Google Scholar 

  • Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338(6215):514–518

    Article  CAS  PubMed  Google Scholar 

  • Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie-Int Edn 48(32):5908–5911

    Article  CAS  Google Scholar 

  • Boitard L, Cottinet D, Bremond N, Baudry J, Bibette J (2015) Growing microbes in millifluidic droplets. Eng Life Sci 15(3):318–326

    Article  CAS  Google Scholar 

  • Bustard MT, Burgess JG, Meeyoo V, Wright PC (2000) Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries. J ChemTechnol Biotechnol 75:1095–1109

    CAS  Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine-bacteria by dilution culture theory, procedures, and initial results. Appl Environ Microbiol 59(3):881–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Button DK, Robertson BR, Lepp PW, Schmidt TM (1998) A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64(11):4467–4476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cachon R, Lacroix C, Divies C (1997) Mass transfer analysis for immobilized cells of Lactococcus lactis sp. using both simulations and in-situ pH measurements. Biotechnol Tech 11(4):251–255

    Article  CAS  Google Scholar 

  • Carini P, Steindler L, Beszteri S, Giovannoni SJ (2013) Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7(3):592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carini P, Campbell EO, Morre J, Sanudo-Wilhelmy SA, Thrash JC, Bennett SE, Temperton B, Begley T, Giovannoni SJ (2014) Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea. ISME J 8(8):1727–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70(1):432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury D, Macdonald JR, Kar AK (2014) Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev 8(6):827–846

    Article  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68(8):3878–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60(4):641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doleyres Y, Fliss I, Lacroix C (2004) Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. J Appl Microbiol 97(3):527–539

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SF (2002) Trends in immobilized enzyme and cell technology. Ind J Biotechnol 1:321–338

    Google Scholar 

  • Duetz WA, Ruedi L, Hermann R, O’Connor K, Buchs J, Witholt B (2000) Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 66(6):2641–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enger J, Goksor M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4(3):196–200

    Article  CAS  PubMed  Google Scholar 

  • Ericsson M, Hanstorp D, Hagberg P, Enger J, Nystrom T (2000) Sorting out bacterial viability with optical tweezers. J Bacteriol 182(19):5551–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Eun Y-J, Utada AS, Copeland MF, Takeuchi S, Weibel DB (2011) Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6(3):260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3(8):1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Flickinger MC, Schottel JL, Bond DR, Aksan A, Scriven LE (2007) Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol Prog 23(1):2–17

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich J, König H (1999) Rapid Isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22(2):249–257

    Article  PubMed  Google Scholar 

  • Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells1. FEMS Microbiol Rev 24(5):567–572

    Article  PubMed  Google Scholar 

  • Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74(11):2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Futra D, Heng LY, Surif S, Ahmad A, Ling TL (2014) Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Sensors (Basel) 14(12):23248–23268

    Article  CAS  Google Scholar 

  • Gan M, Su J, Wang J, Wu H, Chen L (2011) A scalable microfluidic chip for bacterial suspension culture. Lab Chip 11(23):4087–4092. doi:10.1039/c1lc20670b

    Article  CAS  PubMed  Google Scholar 

  • Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72(3):257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giebel H-A, Kalhoefer D, Gahl-Janssen R, Choo Y-J, Lee K, Cho J-C, Tindall BJ, Rhiel E, Beardsley C, Aydogmus O, Voget S, Daniel R, Simon M, Brinkhoff T (2013) Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int J Syst Evolut Microbiol 63(Pt 11):4207–4217

    Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Gorlas A, Alain K, Bienvenu N, Geslin C (2013) Thermococcus prieurii sp nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 63:2920–2926

    Article  CAS  PubMed  Google Scholar 

  • Graham DM, Messerli MA, Pethig R (2012) Spatial manipulation of cells and organelles using single electrode dielectrophoresis. Biotechniques 52(1):39–43

    CAS  PubMed  Google Scholar 

  • Grover SC, Skirtach AG, Gauthier RC, Grover CP (2001) Automated single-cell sorting system based on optical trapping. J Biomed Opt 6(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Hahnke RL, Bennke CM, Fuchs BM, Mann AJ, Rhiel E, Teeling H, Amann R, Harder J (2015) Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea. Environ Microbiol 17:3515–3526

    Google Scholar 

  • Haro-Gonzalez P, Ramsay WT, Martinez Maestro L, del Rosal B, Santacruz-Gomez K, del Carmen Iglesias-de la Cruz M, Sanz-Rodriguez F, Chooi JY, Rodriguez Sevilla P, Bettinelli M, Choudhury D, Kar AK, Garcia Sole J, Jaque D, Paterson L (2013) Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells. Small 9(12):2162–2170

    Google Scholar 

  • Hsiao AP, Barbee KD, Huang X (2010) Microfluidic device for capture and isolation of single cells. In: Biosensing Iii 7759

    Google Scholar 

  • Hu S, Sun D (2011) Automatic transportation of biological cells with a robot-tweezer manipulation system. Int J Robot Res 30(14):1681–1694

    Article  Google Scholar 

  • Hu XY, Bessette PH, Qian JR, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102(44):15757–15761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imasaka T, Kawabata Y, Kaneta T, Ishidzu Y (1995) OPTICAL CHROMATOGRAPHY. Anal Chem 67:1763–1765

    Google Scholar 

  • Ingham CJ, van Hylckama JET (2008) MEMS and the microbe. Lab Chip 8(10):1604–1616

    Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylckama Vlieg JET, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci 104(46):18217–18222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham C, Bomer J, Sprenkels A, van den Berg A, de Vos W, van Hylckama Vlieg J (2010) High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide. Lab Chip 10(11):1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Tago K, Senoo K (2010) Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biotechnol 86(5):1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Ishøy T, Kvist T, Westermann P, Ahring B (2006) An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation. Appl Microbiol Biotechnol 69(5):510–514

    Article  PubMed  CAS  Google Scholar 

  • Joensson HN, Andersson Svahn H (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192

    Article  CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Johnstone KI (1969) The isolation and cultivation of single organisms. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, New York, vol 1, pp 455–471

    Google Scholar 

  • Johnstone KI (1973) Micromanipulation of bacteria. The cultivation of bacteria and their spores by the agar gel dissection technique. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Joint I, Muehling M, Querellou J (2010) Culturing marine bacteria - an essential prerequisite for biodiscovery. Microb Biotechnol 3(5):564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Kanasawud P, Hjiirleifsdottir S, Hoist O, Mattiasson B (1989) Studies on immobilization of the thermophilic bacterium Thermus aquaticus YT-1 by entrapment in various matrices. Appl Microbiol Biotechnol 31:228–233

    Article  CAS  Google Scholar 

  • Keloth A, Paterson L, Markx GH, Kar AK (2015) Three-dimensional optofluidic device for isolating microbes. In: Microfluidics, biomems, and medical microsystems, vol Xiii, p 9320

    Google Scholar 

  • Keymer JE, Galajda P, Muldoon C, Park S, Austin RH (2006) Bacterial metapopulations in nanofabricated landscapes. Proc Natl Acad Sci USA 103(46):17290–17295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorshidi MA, Rajeswari PKP, Wahlby C, Joensson HN, Andersson Svahn H (2014) Automated analysis of dynamic behavior of single cells in picoliter droplets. Lab Chip 14(5):931–937

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA 105(47):18188–18193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingeberg M, Vorlop KD, Antranikian G (1990) Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable alpha-amylases and pullulanases. Appl Microbiol Biotechnol 33(5):494–500

    Article  CAS  PubMed  Google Scholar 

  • Konneke M, Bernhard A, de la Torre J, Walker C, Waterbury J, Stahl D (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, Fernandez-Guerra A, Jeanthon C, Rahav E, Ullrich M, Wichels A, Gerdts G, Polymenakou P, Kotoulas G, Siam R, Abdallah RZ, Sonnenschein EC, Cariou T, O’Gara F, Jackson S, Orlic S, Steinke M, Busch J, Duarte B, Cacador I, Canning-Clode J, Bobrova O, Marteinsson V, Reynisson E, Loureiro CM, Luna GM, Quero GM, Loscher CR, Kremp A, DeLorenzo ME, Ovreas L, Tolman J, LaRoche J, Penna A, Frischer M, Davis T, Katherine B, Meyer CP, Ramos S, Magalhaes C, Jude-Lemeilleur F, Aguirre-Macedo ML, Wang S, Poulton N, Jones S, Collin R, Fuhrman JA, Conan P, Alonso C, Stambler N, Goodwin K, Yakimov MM, Baltar F, Bodrossy L, Van De Kamp J, Frampton DM, Ostrowski M, Van Ruth P, Malthouse P, Claus S, Deneudt K, Mortelmans J, Pitois S, Wallom D, Salter I, Costa R, Schroeder DC, Kandil MM, Amaral V, Biancalana F, Santana R, Pedrotti ML, Yoshida T, Ogata H, Ingleton T, Munnik K, Rodriguez-Ezpeleta N, Berteaux-Lecellier V, Wecker P, Cancio I, Vaulot D, Bienhold C, Ghazal H, Chaouni B, Essayeh S, Ettamimi S, Zaid EH, Boukhatem N, Bouali A, Chahboune R, Barrijal S, Timinouni M, El Otmani F, Bennani M, Mea M, Todorova N, Karamfilov V, Ten Hoopen P, Cochrane G, L’Haridon S, Bizsel KC, Vezzi A, Lauro FM, Martin P, Jensen RM, Hinks J, Gebbels S, Rosselli R, De Pascale F, Schiavon R, Dos Santos A, Villar E, Pesant S, Cataletto B, Malfatti F, Edirisinghe R, Silveira JAH, Barbier M, Turk V, Tinta T, Fuller WJ, Salihoglu I, Serakinci N, Ergoren MC, Bresnan E, Iriberri J, Nyhus PAF, Bente E, Karlsen HE, Golyshin PN, Gasol JM, Moncheva S, Dzhembekova N, Johnson Z, Sinigalliano CD, Gidley ML, Zingone A, Danovaro R, Tsiamis G, Clark MS, Costa AC, El Bour M, Martins AM, Collins RE, Ducluzeau A-L, Martinez J, Costello MJ, Amaral-Zettler LA, Gilbert JA, Davies N, Field D, Glockner FO (2015) The ocean sampling day consortium. GigaScience 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21(4):377–397

    Article  CAS  Google Scholar 

  • Landenberger B, Hoefemann H, Wadle S, Rohrbach A (2012) Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12(17):3177–3183

    Article  CAS  PubMed  Google Scholar 

  • Lederberg J, Lederberg EM (1952) Replica plating and indirect selection of bacterial mutants. J Bacteriol 63(3):399–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leong TG, Randall CL, Benson BR, Zarafshar AM, Gracias DH (2008) Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells. Lab Chip 8(10):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Vu KT, Krishnan P, Trang TC, Shin D, Kimel S, Berns MW (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J 70(3):1529–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459

    Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angewandte Chemie-Int Edn 45(16):2556–2560

    Article  CAS  Google Scholar 

  • Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lok C (2015) Mining the microbial dark matter. Nature 522(7556):270–273

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Moraes C, Ye G, Simmons CA, Sun Y (2010) Single cell deposition and patterning with a robotic system. PLoS ONE 5(10):e13542

    Google Scholar 

  • Ma L, Datta SS, Karymov MA, Pan Q, Begolo S, Ismagilov RF (2014) Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr Biol 6(8):796–805

    Article  CAS  Google Scholar 

  • Martens-Habbena W, Sass H (2006) Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microbiol 72(1):87–95. doi:10.1128/aem.72.1.87-95.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason VP, Markx GH, Thompson IP, Andrews JS, Manefield M (2005) Colonial architecture in mixed species assemblages affects AHL mediated gene expression. FEMS Microbiol Lett 244(1):121–127

    Article  CAS  PubMed  Google Scholar 

  • Mazard S, Ostrowski M, Holland R, Zubkov MV, Scanlan DJ (2014) Targeted genomics of flow cytometrically sorted cultured and uncultured microbial groups. Methods Mol Biol (Clifton, NJ) 1096:203–212

    Google Scholar 

  • Morono Y, Terada T, Kallmeyer J, Inagaki F (2013) An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol 15(10):2841–2849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai M, Oohara K, Kato K, Kawashima T, Shibata T (2015) Development and characterization of hollow microprobe array as a potential tool for versatile and massively parallel manipulation of single cells. Biomed Microdevices 17(2). doi:10.1007/s10544-015-9943-z

  • Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77(5):2856–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76(8):2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton S, Lacroix C (2000) Gellan gum gel as entrapment matrix for high temperature fermentation processes: a rheological study. Biotechnol Tech 4(5):351–356

    Google Scholar 

  • Nussinovitch A (2010) Bead formation, strengthening, and modification. Polymer macro- and micro-gel beads: fundamentals and applications. Springer, New York, pp 27–52

    Chapter  Google Scholar 

  • Ozcan M, Onal C, Akatay A (2006) A compact, automated and long working distance optical tweezer system. J Mod Opt 53(3):357–364

    Article  CAS  Google Scholar 

  • Paie P, Bragheri F, Vazquez RM, Osellame R (2014) Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab Chip 14(11):1826–1833

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Stephenson AL, Kazamia E, Huck WTS, Dennis JS, Smith AG, Abell C (2011) Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Integrative Biology 3(10):1043–1051

    Article  PubMed  Google Scholar 

  • Park J, Kerner A, Burns MA, Lin XN (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS ONE 6(2):e17019

    Google Scholar 

  • Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633

    Article  CAS  PubMed  Google Scholar 

  • Rathore S, Desai PM, Liew CV, Chan LW, Lieng PWS (2013) Microencapsulation of microbial cells. J Food Eng 116(2):369–381

    Article  CAS  Google Scholar 

  • Robert D, Pamme N, Conjeaud H, Gazeau F, Iles A, Wilhelm C (2011) Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11(11):1902–1910

    Article  CAS  PubMed  Google Scholar 

  • Roy D (2015) Novel bioreactors for culturing marine organisms. In: Kim S-K (ed) Springer handbook of marine biotechnology. Springer, Berlin, pp 353–358

    Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The sorcerer II global ocean sampling expedition: northwest atlantic through eastern tropical pacific. PLoS Biol 5(3):398–431

    Article  CAS  Google Scholar 

  • Sacconi L, Tolic-Norrelykke IM, Stringari C, Antolini R, Pavone FS (2005) Optical micromanipulations inside yeast cells. Appl Opt 44(11):2001–2007

    Article  PubMed  Google Scholar 

  • Safarik I, Safarikova M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B 722(1–2):33–53

    Article  CAS  Google Scholar 

  • Schnelle T, Muller T, Hagedorn R, Voigt A, Fuhr G (1999) Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles. Biochimica Et Biophysica Acta-Gen Subj 1428(1):99–105

    Article  CAS  Google Scholar 

  • Schut F, Devries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine-bacteria by dilution culture growth-growth, maintenance and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59(7):2150–2160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe AN, Michaud GL (1974) Hydrophobic grid-membrane filters: new approach to microbiological enumeration. Appl Microbiol 28(2):223–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Oh H-M, Cho J-C (2009) Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea. West Pac Ocean. FEMS Microbiol Lett 295(2):141–147

    Article  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15(5):613–620

    Article  CAS  PubMed  Google Scholar 

  • Stingl U, Tripp HJ, Giovannoni SJ (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J 1(4):361–371

    CAS  PubMed  Google Scholar 

  • Stumpf F, Schoendube J, Gross A, Rath C, Niekrawietz S, Koltay R, Roth G (2015) Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation. Biosens Bioelectron 69:301–306

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Kawada H, Hirano K, Ishikawa M, Kitajima H (2008) Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. Opt Express 16(19):15115–15122

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kawasaki K, Daimon S, Kitagawa W, Yamamoto K, Tamaki H, Tanaka M, Nakatsu CH, Kamagata Y (2014) A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microbiol 80(24):7659–7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452(7188):741–744

    Article  CAS  PubMed  Google Scholar 

  • Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305(3):534–540

    Article  CAS  PubMed  Google Scholar 

  • Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–80

    Article  CAS  PubMed  Google Scholar 

  • Venter J, Remington K, Heidelberg J, Halpern A, Rusch D, Eisen J, Wu D, Paulsen I, Nelson K, Nelson W (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vincent ME, Liu W, Haney EB, Ismagilov RF (2010) Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev 39(3):974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakamoto Y, Umehara S, Matsumura K, Inoue I, Yasuda K (2003) Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers. Sens Actuators B-Chem 96(3):693–700

    Article  CAS  Google Scholar 

  • Wang X, Gou X, Chen S, Yan X, Sun D (2013) Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition. J Micromechan Microeng 23(7):075006

    Google Scholar 

  • Watve M, Shejval V, Sonawane C, Rahalkar M, Matapurkar A, Shouche Y, Patole M, Phadnis N, Champhenkar A, Damle K, Karandikar S, Kshirsagar V, Jog M (2000) The 'K' selected oligophilic bacteria: A key to uncultured diversity? Current Science 78:1535–1542

    Google Scholar 

  • Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5(3):209–218

    Article  CAS  PubMed  Google Scholar 

  • Winson MK, Davey HM (2000) Flow cytometric analysis of microorganisms. Method Companion Method Enzymol 21(3):231–240

    Article  CAS  Google Scholar 

  • Wyatt Shields Iv C, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249

    Article  CAS  Google Scholar 

  • Yang S-M, Yu T-M, Huang H-P, Ku M-Y, Hsu L, Liu C-H (2010) Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Opt Lett 35(12):1959–1961

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Hattori A, Kim H, Terazono H, Hayashi M, Takei H, Kaneko T, Nomura F (2013) Non-destructive on-chip imaging flow cell-sorting system for on-chip cellomics. Microfluid Nanofluid 14(6):907–931

    Article  CAS  Google Scholar 

  • Yun H, Kim K, Lee WG (2013) Cell manipulation in microfluidics. Biofabrication 5(2):022001

    Google Scholar 

  • Yusof A, Keegan H, Spillane CD, Sheils OM, Martin CM, O’Leary JJ, Zengerle R, Koltay P (2011) Inkjet-like printing of single-cells. Lab Chip 11(14):2447–2454

    Article  CAS  PubMed  Google Scholar 

  • Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99(24):15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Leung C, Lu Z, Esfandiari N, Casper RF, Sun Y (2012) Controlled aspiration and positioning of biological cells in a micropipette. IEEE Trans Biomed Eng 59(4):1032–1040

    Article  PubMed  Google Scholar 

  • Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, Yin H, Huang WE, Xu J, Ma B (2015) Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 87(4):2282–2289

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Kaprelyants AS, Salina EG, Schuler M, Markx GH (2010) Construction by dielectrophoresis of microbial aggregates for the study of bacterial cell dormancy. Biomicrofluidics 4(2):022810

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein. We wish to thank Jochen Schuster and Anusha Keloth for useful discussions and their help with some of the illustrations. Research was supported by UBO, CNRS, and IFREMER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane L’Haridon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

L’Haridon, S., Markx, G.H., Ingham, C.J., Paterson, L., Duthoit, F., Le Blay, G. (2016). New Approaches for Bringing the Uncultured into Culture. In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_15

Download citation

Publish with us

Policies and ethics