Skip to main content

Marine Microbial Systems Ecology: Microbial Networks in the Sea

  • Chapter
  • First Online:
Book cover The Marine Microbiome

Abstract

Next-generation sequencing of DNA has revolutionized microbial ecology. Using this technology, it became for the first time possible to analyze hundreds of samples simultaneously and in great detail. 16S rRNA amplicon sequencing, metagenomics and metatranscriptomics became available to determine the diversity and activity of microbial communities. Moreover, the huge amount of data that is obtained made it possible to build statistically significant networks from which ecological (or metabolic) interactions amongst microbes and between microbes and their environment could be inferred. Here I give an overview of the use of next-generation sequencing and network analysis in marine microbial ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF (2015) Microbial community transcriptional networks are conserved in three domains at ocean basin scales. PNAS 112:5443–5448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam A, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol 10:257–263

    Article  Google Scholar 

  • Baker BJ, Sheik CS, Taylor CA et al (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J 7:1962–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2011) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    Article  CAS  PubMed  Google Scholar 

  • Brum JR, Ignacio-Espinoza JC, Roux S et al (2015) Patterns and ecological drivers of ocean viral communities. Science 348:1261498-1–1261498-10

    Google Scholar 

  • Cain F (2013) How many stars in the universe? Universe Today. http://www.universetoday.com/102630/how-many-stars-are-there-in-the-universe/

  • Chow C-ET, Kim DY, Sachdeva R et al (2014) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J 8:816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cram JA, Xia LC, Needham DM, Sachdeva R, Sun F, Fuhrman JA (2015) Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME J 9:2573–2586

    Article  PubMed  Google Scholar 

  • Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive the Earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J et al (2012) Microbial co-occurrence relationships the human microbiome. PLoS Comput Biol 8:e1002606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust K, Lima-Mendez G, Lerat J-S, Sathirapongsasuti JF et al (2015) Cross-biome comparison of microbial association networks. Front Microbiol 6:1200

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferla MP, Thrash J, Giovannoni SJ, Patrick WM (2013) New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE 8:e83383

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci 105:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Steele JA, Caporaso JG et al (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamady M, Walker JJ, Harris JK et al (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanemaaijer M, Röling WFM, Olivier BG et al (2015) Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure. Front Microbiol 6:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE 8:e57355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurwitz BL, Westveld AH, Brum JR, Sullivan MB (2014) Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci 111:10714–10719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karsenti E, Acinas SG, Bork P et al (2011) A holistic approach to marine eco-system biology. PLoS Biol 9:e1001177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klindworth A, Mann AJ, Huang S, Wichels A et al (2014) Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar Genomics 18:185–192

    Article  PubMed  Google Scholar 

  • Knopf A, Kostadinov I, Wichels A, Quast C, Glöckner FO (2015) Metatranscriptomics of marine bacterioplankton during winter time in the North Sea by total RNA sequencing. Mar Genomics 19:45–46

    Article  Google Scholar 

  • Lee D-H, Zo Y-G, Kim S-J (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation-polymorphism. Appl Environ Microbiol 62:3112–3120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima-Mendez G, Faust K, Henry N et al (2015) Determinants of community structure in the global plankton interactome. Science 348:1262073-1–1262073-9

    Google Scholar 

  • Logares R, Sunagawa S, Salazar G et al (2014) Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16:2659–2671

    Article  CAS  PubMed  Google Scholar 

  • Maclean D, Jones JDG, Studholme DJ (2009) Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296

    PubMed  Google Scholar 

  • Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplified products. Curr Opin Microbiol 2:323–327

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–685

    Article  CAS  PubMed  Google Scholar 

  • Muller EEL, Glaab E, May P, Vlassis N, Wilmes P (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  PubMed  Google Scholar 

  • Ottesen EA, Marin R III, Preston CM, Young CR et al (2011) Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J 5:1881–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottesen EA, Young CR, Eppley JM, Ryan JP et al (2013) Pattern and synchrony of gene expression among sympartic marine microbial populations. PNAS 110:E488–E497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

  • Peura S, Bertilsson S, Jones RI, Eiler A (2015) Resistant microbial co-occurrence patterns inferred by network topology. Appl Environ Microbiol 81:2090–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699

    Article  CAS  PubMed  Google Scholar 

  • Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11:247–251

    Article  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS et al (2009) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3:93–105

    Article  CAS  PubMed  Google Scholar 

  • Sowell SM, Abraham PE, Shah M, Verberkmoes NC et al (2011) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 5:856–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley JT, Konopka A (1985) Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Steele JA, Countway PD, Xia L et al (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359-1–1261359-9

    Article  Google Scholar 

  • Teeling H, Fuchs BM, Becher D, Klockow C et al (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611

    Article  CAS  PubMed  Google Scholar 

  • Thiele I, Heinken A, Fleming RMT (2013) A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol 24:4–12

    Article  CAS  PubMed  Google Scholar 

  • Verberkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7:96–205

    Article  Google Scholar 

  • Wang D-Z, Xie Z-X, Zhang S-F (2014) Marine metaproteomics; current status and future directions. J Proteomics 97:27–35

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widder S, Besemer K, Singer GA, Ceola S et al (2014) Fluvial network organization imprints on microbial co-occurrence networks. PNAS 111:12799–12804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TJ, Cavicchioli R (2014) Marine metaproteomics: deciphering the microbial metabolic food web. Trends Microbiol 22:248–260

    Article  CAS  PubMed  Google Scholar 

  • Zengler K, Palsson BO (2012) A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 10:366–372

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein. Gerard Muyzer is financially supported by the Research Priority Area Systems Biology of the University of Amsterdam. Muhe Diao is acknowledged for calculating the co-occurrence network, and Tim Bush for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Muyzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muyzer, G. (2016). Marine Microbial Systems Ecology: Microbial Networks in the Sea. In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_12

Download citation

Publish with us

Policies and ethics