Skip to main content

Tuning the Optical Properties of Perovskite in HTM Free Solar Cells

  • Chapter
  • First Online:
Hole Conductor Free Perovskite-based Solar Cells

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

As discussed in the introduction of this book, the optical properties of OMHP could be changed by chemical modifications, in the halide site (X-site) or in the cation site (A-site), see Fig. 1.1. This chapter discusses both options and their function in HTM-free OMHP solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharon S, Cohen B-E, Etgar L (2014) Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J Phys Chem C 118:17160–17165

    Article  Google Scholar 

  2. Abrusci A, Stranks SD, Docampo P, Yip H-L, Jen AKY, Snaith HJ (2013) High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett 13:3124–3128

    Article  Google Scholar 

  3. Kitazawa N (1997) Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br, I)4 and (C6H5C2H4NH3)2Pb(Cl, Br)4. Mater Sci Eng B 49:233–238

    Article  Google Scholar 

  4. Ishihara T, Takahashi J, Goto T (1990) Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n + 1NH3)PbI4. Phys Rev B 42(17):11099

    Article  Google Scholar 

  5. Ishihara T (1994) Optical properties of PbI-based perovskite structures. J Lumin 60–61:269–274

    Article  Google Scholar 

  6. Aharon S, Gamliel S, Cohen B, Etgar L (2014) Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys 16:10512–10518

    Article  Google Scholar 

  7. Aharon S, Dymshits A, Rotem A, Etgar L (2015) Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J Mater Chem A 3:9171–9178

    Google Scholar 

  8. Supasai1 T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T (2013) Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl Phys Lett 103:183906

    Google Scholar 

  9. Barnea-Nehoshtan L, Kirmayer S, Edri E, Hodes G, Cahen D (2014) Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J Phys Chem Lett 5:2408–2413

    Article  Google Scholar 

  10. Kronik L, Shapira Y (2001) Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering. Surf Interface Anal 31:954–965

    Article  Google Scholar 

  11. Epron GE, Stranks SD, Manelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982–988

    Article  Google Scholar 

  12. Frank AJ, Kopidakis N, van de Lagemaat J (2004) Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev 248:1165–1179

    Article  Google Scholar 

  13. Zhao Y, Nardes AM, Zhu K (2014) Solid-state mesostructured perovskite CH3NH3PBI3 solar cells: charge transport, recombination, and diffusion length. J Phys Chem Lett 5:490–494

    Article  Google Scholar 

  14. Zhao Y, Zhu K (2013) charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett 4:2880–2884

    Article  Google Scholar 

  15. Peter LM, Wijayantha KGU (2000) Electron transport and back reaction in dye sensitized nanocrystalline photovoltaic cells. Electrochim Acta 45:4543–4551

    Article  Google Scholar 

  16. Zhu K, Jang S-R, Frank AJ (2011) Impact of high charge-collection efficiencies and dark energy-loss processes on transport, recombination, and photovoltaic properties of dye-sensitized solar cells. J Phys Chem Lett 2:1070–1076

    Article  Google Scholar 

  17. Mosconi E, Amat A, Nazeeruddin MK, Graẗzel M, Angelis FD (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117:13902–13913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioz Etgar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Etgar, L. (2016). Tuning the Optical Properties of Perovskite in HTM Free Solar Cells. In: Hole Conductor Free Perovskite-based Solar Cells. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32991-8_5

Download citation

Publish with us

Policies and ethics