Skip to main content

Synthesis of Oxide Nanotubes/Nanorods by Hydrothermal Method

  • Chapter
  • First Online:
Book cover 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 753 Accesses

Abstract

Titanate nanotubes and ZnO nanorods are the most studied 1D oxide nanostructures, due to their specific structure, morphology, and special properties. Several physical and chemical methods of preparation have been developed for their preparation. Among the chemical methods, the mostly used are the template-assisted sol–gel method, hydrothermal method, and anodic oxidation. In the following chapter, a short review of the results obtained by hydrothermal preparation of titanate nanotubes and ZnO nanorods and their structural, morphological, and thermal characterization is presented. In the case of titanate nanotubes, the factors influencing the hydrothermal synthesis as well as factors influencing the post-hydrothermal treatment of resulted titanate were discussed. The influence of the microwaves on the hydrothermal preparation of titanate nanotubes is also presented. In the case of ZnO nanorods/nanotubes, the different experimental conditions for their preparation by hydrothermal method were established. Among the different precursors and reagents involved in the hydrothermal procedure for the ZnO nanorod/nanotube preparation, the zinc nitrate–hexamethylenetetramine system is one of the mostly used, and it was approached in more details. The obtaining of ZnO nanorods and their transformation into nanotubes in the mentioned system was discussed. At the same time, the possibility of doping ZnO nanotubes and their growth as aligned ZnO nanorods on the different substrates was presented. Besides titanate nanotubes and ZnO nanorods/nanotubes, several other oxides (V2O5, MoO3, WO3, SnO2, Fe2O3) that could be obtained by hydrothermal method were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu N, Chen X, Zhang J et al (2013) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51

    Article  Google Scholar 

  2. Wong CL, Tan YN, Mohamed AR (2011) A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. J Environ Manag 92:1669–1680

    Article  Google Scholar 

  3. Hernández-Hipólito P, García-Castillejos M, Martínez-Klimova E et al (2014) Biodiesel production with nanotubular sodium titanate as a catalyst. Catal Today 220–222:4–11

    Article  Google Scholar 

  4. Erjavec B, Kaplan R, Djinović P et al (2013) Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl Catal B 132–133:342–352

    Article  Google Scholar 

  5. Santos-López IA, Handy BE, García-de-León R (2013) Titanate nanotubes as support of solid base catalyst. Thermochim Acta 567:85–92

    Article  Google Scholar 

  6. Chen HY, Lo SL, Ou HH (2013) Catalytic hydrogenation of nitrate on Cu–Pd supported on titanate nanotube and the experiment after aging, sulfide fouling and regeneration procedures. Appl Catal B 142–143:65–71

    Article  Google Scholar 

  7. Wang L, Liu W, Wang T et al (2013) Highly efficient adsorption of Cr(VI) from aqueous solutions by amino-functionalized titanate nanotubes. Chem Eng J 225:153–163

    Article  Google Scholar 

  8. Madarász D, Szenti I, Sápi A et al (2014) Exploiting the ion-exchange ability of titanate nanotubes in a model water softening process. Chem Phys Lett 591:161–165

    Article  Google Scholar 

  9. Zhao L, Qi L, Wang H (2013) Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes. J Power Sources 242:597–603

    Article  Google Scholar 

  10. Ai Q, Yang D, Li Y et al (2014) Highly efficient covalent immobilization of catalase on titanate nanotubes. Biochem Eng J 83:8–15

    Article  Google Scholar 

  11. Dong P, Wang Y, Liu B et al (2012) Photocatalytic activity of (B, N)-codoped titanate nanotubes. J Am Ceram Soc 95:82–84

    Article  Google Scholar 

  12. Plodinec M, Gajović A, Jakša G et al (2014) High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications. J Alloy Comp 591:147–155

    Article  Google Scholar 

  13. Hu CC, Hsu TC, Lu SY (2013) Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment. Appl Surf Sci 280:171–178

    Article  Google Scholar 

  14. Lin X, Rong F, Ji X et al (2011) Preparation and enhanced visible light photocatalytic activity of N-doped titanate nanotubes by loaded with Ag for the degradation of X-3B. Solid State Sci 13:1424–1428

    Article  Google Scholar 

  15. Al-Hajjaj AA, Zamora B, Bavykin DV et al (2012) Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd3[Fe(CN)6] Prussian Blue analogue. Int J Hydrogen Energy 37:318–326

    Article  Google Scholar 

  16. Kim S, Kim M, Hwang SH et al (2012) Enhancement of photocatalytic activity of titania-titanate nanotubes by surface modification. Appl Catal B 123–124:391–397

    Article  Google Scholar 

  17. Herrasti P, Kulak AN, Bavykin DV et al (2011) Electrodeposition of polypyrrole-titanate nanotube composites coatings and their corrosion resistance. Electrochim Acta 56:1323–1328

    Article  Google Scholar 

  18. Umek P, Huskić M, Škapin AS et al (2008) Structural and mechanical properties of polystyrene nanocomposites with 1D titanate nanostructures prepared by an extrusion process. Polym Compos 30:1318–1325

    Article  Google Scholar 

  19. Zakharova GS, Volkov LV, Ivannovskaya VV et al (2005) Nanotubes and related nanostructures of d-metal oxides: synthesis and computer design. Russ Chem Rev 74:587–618

    Article  Google Scholar 

  20. Kim I-D, Choi S-J (2015) Nanofibers and nanotubes. In: Levy D, Zayat M (eds) The Sol-Gel handbook—synthesis, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

  21. Bavykin DV, Walsh FC (2010) Titanate and titania nanotubes: synthesis, properties and applications. In: O’Brien P, Kroto H, Craighead H (eds) RSC nanoscience & nanotechnology, vol 12. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  22. Pang YL, Lim S, Ong HC et al (2014) A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts. Appl Catal A 481:127–142

    Article  Google Scholar 

  23. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824

    Article  Google Scholar 

  24. Hoyer P (1996) Formation of titanium dioxide nanotube array. Langmuir 12:1411–1413

    Article  Google Scholar 

  25. Ou H-H, Lo S-L (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification and application. Separ Purif Technol 58:179–191

    Article  Google Scholar 

  26. Tang Z, Zhou L, Yang L et al (2010) Preparation and luminescence study of Eu(III) titanate nanotubes and nanowires using carbon nanotubes as removable templates. J Lumin 130:45–51

    Article  Google Scholar 

  27. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  Google Scholar 

  28. Huang JY, Zhang KQ, Lai YK (2013) Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int J Photoenergy 2013:761971

    Google Scholar 

  29. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114:9385–9454

    Article  Google Scholar 

  30. Kasuga T, Hiramatsu M, Hoson A et al (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  Google Scholar 

  31. Tan AW, Pingguan-Murphy B, Ahmad R et al (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38:4421–4435

    Article  Google Scholar 

  32. Weng Q, Song SH, Hodgson S et al (2006) Synthesis and characterization of nanotubular titanates and titania. J Eur Ceram Soc 26:1405–1409

    Article  Google Scholar 

  33. Zhao Y, Jin J, Yang X (2007) Hydrothermal synthesis of titanate nanowire arrays. Mater Lett 61:384–388

    Article  Google Scholar 

  34. Wu X, Jiang QZ, Ma ZF et al (2005) Synthesis of titania nanotubes by microwave irradiation. Solid State Commun 136:513–517

    Article  Google Scholar 

  35. Zhang J, Wang YA, Yang J et al (2006) Microwave-assisted synthesis of potassium titanate nanowires. Mater Lett 60:3015–3017

    Article  Google Scholar 

  36. Kukovecz Á, Hodos M, Horváth E et al (2005) Oriented crystal growth model explains the formation of titania nanotubes. J Phys Chem B 109:17781–11783

    Article  Google Scholar 

  37. Chen Q, Du GH, Zhang S et al (2002) The structure of trititanate nanotubes. Acta Cryst B58:587–593

    Article  Google Scholar 

  38. Liu P, Zhang H, Liu H et al (2011) A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. J Am Chem Soc 133:19032–19035

    Article  Google Scholar 

  39. Chen Q, Zhou W, Du G et al (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211

    Article  Google Scholar 

  40. Lan Y, Gao X, Zhu H et al (2005) Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater 15:1310–1318

    Article  Google Scholar 

  41. Bavykin DV, Lapkin AA, Plucinski PK et al (2005) Reversible storage of molecular hydrogen by sorption into mutilayered TiO2 nanotubes. J Phys Chem B 109:19422–19427

    Article  Google Scholar 

  42. Yao BD, Chan YF, Zhang XY et al (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Article  Google Scholar 

  43. Bavykin DV, Parmon VN, Lapkin AA et al (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377

    Article  Google Scholar 

  44. Nakahira A, Kato W, Tamai M et al (2004) Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources. J Mater Sci 39:4239–4245

    Article  Google Scholar 

  45. Yu J, Yu H (2006) Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals. Mater Chem Phys 100:507–512

    Article  Google Scholar 

  46. Yu J, Yu H, Cheng B et al (2006) Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J Mol Catal A 249:135–142

    Article  Google Scholar 

  47. Tsai CC, Teng H (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16:4352–4358

    Article  Google Scholar 

  48. Chen X, Cao S, Weng X et al (2012) Effects of morphology and structure of titanate supports on the performance of ceria in selective catalytic reduction of NO. Catal Commun 26:178–182

    Article  Google Scholar 

  49. Mozia S, Borowiak-Palen E, Przepiorski J et al (2010) Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. J Phys Chem Solids 71:263–272

    Article  Google Scholar 

  50. Bavykin DV, Friedrich JM, Lapkin AA et al (2006) Stability of aqueous suspensions of titanate nanotubes. Chem Mater 18:1124–1129

    Article  Google Scholar 

  51. Song F, Zhao Y, Zhong Q (2013) Adsorption of carbon dioxide on amine-modified TiO2 nanotubes. J Environ Sci 25:554–560

    Article  Google Scholar 

  52. Kim M, Hwang SH, Lim SK et al (2012) Effects of ion exchange and calcinations on the structure and photocatalytic activity of hydrothermally prepared titanate nanotube. Cryst Res Technol 47:1190–1194

    Article  Google Scholar 

  53. Lee CK, Lin KS, Wu CF et al (2008) Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotube. J Hazard Mater 150:494–503

    Article  Google Scholar 

  54. Vijayan BK, Dimitrijevic NM, Wu J et al (2010) The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J Phys Chem C 114:21262–21269

    Article  Google Scholar 

  55. Tang ZR, Li F, Zhang Y et al (2011) Composites of titanate nanotube and carbon nanotube as photocatalyst with high mineralization ratio for gas-phase degradation of volatile aromatic pollutant. J Phys Chem C 115:7880–7886

    Article  Google Scholar 

  56. Du GH, Chen Q, Che RC et al (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79:3702–3704

    Article  Google Scholar 

  57. Seo D-S, Lee JK, Kim H (2001) Preparation of nanotube-shaped TiO2 powder. J Cryst Growth 229:428–432

    Article  Google Scholar 

  58. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    Article  Google Scholar 

  59. Chen Y-F, Lee C-Y, Yeng M-Y et al (2003) Preparing titanium oxide with various morphologies. Mater Chem Phys 81:39–44

    Article  Google Scholar 

  60. Wang W, Varghese OK, Paulose M et al (2004) A study on the growth and structure of titania nanotubes. J Mater Res 19:417–422

    Article  Google Scholar 

  61. Kasuga T, Hiramatsu M, Hoson A et al (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  Google Scholar 

  62. Poudel B, Wang WZ, Dames C et al (2005) Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16:1935

    Article  Google Scholar 

  63. Zhang Y, Wu J, Zhang Y et al (2014) Characterization and humidity sensing properties of the sensor based on Na2Ti3O7 nanotubes. J Nanosci Nanotechnol 14:4303–4307

    Article  Google Scholar 

  64. Wu D, Liu J, Zhao X et al (2005) Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem Mater 18:547–553

    Article  Google Scholar 

  65. Nosheen S, Galasso FS, Suib SL (2009) Role of Ti−O bonds in phase transitions of TiO2. Langmuir 25:7623–7630

    Article  Google Scholar 

  66. Tsai CC, Teng H (2004) Nanotube formation from a sodium titanate powder via low-temperature acid treatment. Langmuir 24:3434–3438

    Article  Google Scholar 

  67. Tsai CC, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater 18:367–373

    Article  Google Scholar 

  68. Tsai CC, Nian J-N, Teng H (2006) Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Appl Surf Sci 253:1898–1902

    Article  Google Scholar 

  69. Preda S, Teodorescu VS, Musuc AM et al (2013) Influence of the TiO2 precursors on the thermal and structural stability of titanate-based nanotubes. J Mater Res 28:294–303

    Article  Google Scholar 

  70. Gao T, Fjellvåg H, Norby P (2009) Crystal structures of titanate nanotubes: a Raman Scattering Study. Inorg Chem 48:1423–1432

    Article  Google Scholar 

  71. Tian BL, Zhang XT, Dai SX et al (2008) Strong visible absorption and photoluminescence of titanic acid nanotubes by hydrothermal method. J Phys Chem C 112:5361–5364

    Article  Google Scholar 

  72. Huang J, Cao Y, Wang M et al (2010) Tailoring of low-dimensional titanate nanostructures. J Phys Chem C 114:14748–17457

    Article  Google Scholar 

  73. Ma R, Fukuda K, Sasaki T et al (2005) Structural features of titanate nanotubes/nanobelts revealed by Raman, x-ray absorption fine structure and electron diffraction characterizations. J Phys Chem B 109:6210–6214

    Article  Google Scholar 

  74. Ribbens S, Meynen V, Van Tendeloo G et al (2008) Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies. Microporous Mesoporous Mater 114:401–409

    Article  Google Scholar 

  75. Yang J, Jin Z, Wang X et al (2003) Study on the composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 20:3898–390

    Article  Google Scholar 

  76. Sun X-M, Li Y-D (2003) Synthesis and characterization of ion exchangeable titanate nanotubes. Chem Eur J 9:2229–2238

    Article  Google Scholar 

  77. Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A 241:173–183

    Article  Google Scholar 

  78. Saponjic ZV, Dimitrijevic NM, Tiede DM et al (2005) Shaping nanoscale architecture through surface chemistry. Adv Mater 17:965–971

    Article  Google Scholar 

  79. Morgan DL, Liu H-W, Frost RL et al (2010) Implications of precursor chemistry on the alkaline hydrothermal synthesis of titania/titanate nanostructures. J Phys Chem C 114:101–110

    Article  Google Scholar 

  80. Deng Q, Wei M, Ding X et al (2008) Brookite-type TiO2 nanotubes. Chem Commun 31:3657–3659

    Article  Google Scholar 

  81. Morgan D, Triani G, Blackford M et al (2011) Alkaline hydrothermal kinetics in titanate nanostructure formation. J Mater Sci 46:548–557

    Article  Google Scholar 

  82. Pavasupree S, Suzuki Y, Yoshikawa S et al (2005) Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand. J Solid State Chem 178(10):3110–3116

    Article  Google Scholar 

  83. Ma Y, Lin Y, Xiao X et al (2006) Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater Res Bull 41:237–243

    Article  Google Scholar 

  84. Bavykin DV, Kulak AN, Walsh FC (2010) Metastable nature of titanate nanotubes in an alkaline environment. Cryst Growth Des 10:4421–4427

    Article  Google Scholar 

  85. Inoue Y, Noda I, Torikai T et al (2010) TiO2 nanotube, nanowire, and rhomboid-shaped particle thin films fixed on a titanium metal plate. J Solid State Chem 183:57–64

    Article  Google Scholar 

  86. Tian ZR, Voight JA, Liu J et al (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385

    Article  Google Scholar 

  87. Miyauchi M, Tokudome H, Toda H et al (2006) Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett 89:043113–043114

    Article  Google Scholar 

  88. Armstrong G, Armstrong AR, Canales J et al (2005) Nanotubes with the TiO2-B structure. Chem Commun 19:2454–2456

    Article  Google Scholar 

  89. Khan MA, Jung HT, Yang OB (2006) Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J Phys Chem B 110:6626–6630

    Article  Google Scholar 

  90. Zang Q, Gao L, Sun J et al (2002) Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem Lett 31:226–227

    Article  Google Scholar 

  91. Papa AL, Millot N, Saviot L et al (2009) Effect of reaction parameters on composition and morphology of titanate nanomaterials. J Phys Chem C 113:12682–12689

    Article  Google Scholar 

  92. Camposeco R, Castillo S, Mejia I et al (2012) Active TiO2 nanotubes for CO oxidation at low temperature. Catal Commun 17:81–88

    Article  Google Scholar 

  93. Yuan ZY, Colomer JF, Su BL (2002) Titanium oxide nanoribbons. Chem Phys Lett 363:362–366

    Article  Google Scholar 

  94. Bavykin DV, Cressey BA, Light ME et al (2009) An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions. Nanotechnology 19:275604

    Article  Google Scholar 

  95. Seo H-K, Kim J-K, Ansari SG et al (2008) A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures. Sol Energy Sol Cell 92:1533–1539

    Article  Google Scholar 

  96. Sreeknantan S, Wei LC (2010) Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method. J Alloy Comp 490:436–442

    Article  Google Scholar 

  97. Dong P, Liu B, Wang Y et al (2011) A study on the H2Ti3O7 sheet-like products during the formation process of titanate nanotubes. J Eletrochem Soc 158:K183–K186

    Article  Google Scholar 

  98. Nakahira A, Kubo T, Numako (2010) Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorg Chem 49:5845–5852

    Article  Google Scholar 

  99. Morgan DL, Zhou H-Y, Frost RL et al (2008) Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of Degussa P25. Chem Mater 20:3800–3802

    Article  Google Scholar 

  100. Nian JN, Teng H (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110:4193–4198

    Article  Google Scholar 

  101. Mor GK, Carvalho MA, Varghese OK et al (2004) A room temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  Google Scholar 

  102. Shyue J-J, Cochran RE, Padture NP (2006) Transparent-conducting, gas-sensing nanostructures (nanowires, nanotubes, thin films) of anatase TiO2 synthesized at near-ambient conditions. J Mater Res 21:2894–2903

    Article  Google Scholar 

  103. Morgado E Jr, de Abreu MAS, Pravia ORC et al (2006) A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci 8:888–900

    Article  Google Scholar 

  104. Suzuki Y, Yoshikawa S (2004) Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J Mater Res 19:982–985

    Article  Google Scholar 

  105. Umek P, Korošec RC, Jančar B et al (2007) The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability. J Nanosci Nanotechnol 7:5302–3508

    Article  Google Scholar 

  106. Zhang C, Jiang X, Tian B et al (2005) Modification and assembly of titanate sodium nanotubes. Colloids Surf A 257(258):521–524

    Article  Google Scholar 

  107. Wei M, Konishi Y, Zhou H et al (2006) Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. Solid State Commun 133:493–497

    Article  Google Scholar 

  108. Wang YQ, Hu GQ, Duan XF et al (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365:427–431

    Article  Google Scholar 

  109. Ma R, Bando Y, Sasaki T (2004) Directly rolling nanosheets into nanotubes. J Phys Chem B 108:2115–2119

    Article  Google Scholar 

  110. Li M-J, Chi Z-Y, Wu Y-C (2012) Phase transformation of hydrothermal derived sodium titanate. J Am Ceram Soc 95:3297–3304

    Article  Google Scholar 

  111. Zhang S, Chen Q, Peng L-M (2005) Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Phys Rev B 71:014104

    Article  Google Scholar 

  112. Menzel R, Peiro AM, Durrant JR et al (2006) Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem Mater 18:6059–6068

    Article  Google Scholar 

  113. Zhang H, Liu P, Wang H et al (2010) Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate. Langmuir 26:1574–1578

    Article  Google Scholar 

  114. Song ZQ, Xu HY, Li KW et al (2006) Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5(H2O) nanosheets. J Mol Catal A 239:87–91

    Article  Google Scholar 

  115. Kim GS, Godbole VP, Seo HK et al (2006) Sodium removal from titanate nanotubes in electrodeposition process. Electrochem Commun 8:471–474

    Article  Google Scholar 

  116. Zhao Y, Jiang X, Tian B et al (2007) Hydrothermal synthesis of titanate nanowire arrays. Mater Lett 61:384–388

    Article  Google Scholar 

  117. Hodos M, Horváth E, Haspel H et al (2004) Photo-sensitation of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem Phys Lett 39:512–515

    Article  Google Scholar 

  118. Kukovecz Á, Hodos M, Kónya Z et al (2005) Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticle. Chem Phys Lett 411:445–449

    Article  Google Scholar 

  119. Ren L, Huang X, Sun F, Je X (2007) Preparation and characterization of doped TiO2 nanodandelion. Mater Lett 61:427–431

    Article  Google Scholar 

  120. Zhu YC, Li HL, Koltypin Y et al (2001) Sonochemical synthesis of titania whiskers and nanotubes. Chem Commun 24:2616–2617

    Article  Google Scholar 

  121. Wang YA, Yang J, Zhang J et al (2005) Microwave-assisted preparation of titanate nanotubes. Chem Lett 34:1168–1169

    Article  Google Scholar 

  122. Wu X, Jiang QZ, Ma ZF et al (2006) Synthesis of titania nanotubes by microwave method. Chin J Inorg Chem 22:341–345

    Article  Google Scholar 

  123. Inada M, Kamada K, Enomoto N et al (2006) Microwave effect for synthesis of TiO2 particles by self-hydrolysis of TiOCl2. J Ceram Soc Jpn 114:814–818

    Article  Google Scholar 

  124. Baghbanzadeh M, Carbone L, Cozzoli PD et al (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359

    Article  Google Scholar 

  125. Peng YP, Lo SL, Ou HH et al (2010) Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysts. J Hazard Mater 183:754–758

    Article  Google Scholar 

  126. Sikhwivhilu LM, Mpelane S, Moloto N et al (2010) Hydrothermal synthesis of TiO2 nanotubes; microwave heating versus conventional heating. In: Mathur S, Ray SS, Ohji T (eds) Nanostructured materials and nanotechnology IV: ceramic engineering and science proceedings, vol 31. Wiley, Hoboken, pp 45–49

    Chapter  Google Scholar 

  127. Wu X, Jiang QZ, Ma ZF et al (2007) Tile overlapping model for synthesizing TiO2 nanotubes by microwave irradiation. Solid State Commun 143:343–347

    Article  Google Scholar 

  128. Ou HH, Lo SL, Liao CH (2011) N-doped TiO2 prepared from microwave-assisted titanate nanotubes (NaxH2-xTi3O7): the effect of microwave irradiation during TNT synthesis on the visible light photoactivity of N-doped TiO2. J Phys Chem C 115:4000–4007

    Article  Google Scholar 

  129. Rodriguez-Gonzalez V, Obregon-Alfaro S, Lozano-Sanchez LM et al (2012) Rapid microwave-assisted synthesis of one-dimensional silver–H2Ti3O7 nanotubes. J Mol Catal A 353–354:63–170

    Google Scholar 

  130. Manfroi DC, dos Anjos A, Cavalheiro AA et al (2014) Titanate nanotubes produced from microwave-assisted hydrothermal synthesis: photocatalytic and structural properties. Ceram Int 40:14483–14491

    Article  Google Scholar 

  131. Preda S, Rutar M, Umek P et al (2015) A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method. Mat Res Bull 71:98–105

    Article  Google Scholar 

  132. Sikhwivhilu LM, Mpelane S, Mwakikunga BW et al (2012) Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments. ACS Appl Mater Interfaces 4:1656–1665

    Article  Google Scholar 

  133. Gao H, Fang G, Wang M et al (2008) The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells. Mater Res Bull 43:3345–3351

    Article  Google Scholar 

  134. Uthirakumar P, Kang JH et al (2011) The different types of ZnO materials on the performance of dye-sensitized solar cells. Phys E 43:1746–1750

    Article  Google Scholar 

  135. Zhou Y, Li D, Zhang X et al (2012) Facile synthesis of ZnO micro-nanostructures with controllable morphology and their applications in dye-sensitized solar cells. Appl Surf Sci 261:759–763

    Article  Google Scholar 

  136. Karst N, Rey G, Doisneau B et al (2011) Fabrication and characterization of a composite ZnO semiconductor as electron transporting layer in dye-sensitized solar cells. Mater Sci Eng B 176:653–659

    Article  Google Scholar 

  137. Yang LY, Dong SY, Sun JH et al (2010) Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst. J Hazardous Mat 179:438–443

    Article  Google Scholar 

  138. Visinescu C, Levy F, Parvulescu VI (2006) Photocatalytic degradation of acetone on ZnO-dopped TiO2 films prepared by sputtering. Rev Roum Chim 51:827–833

    Google Scholar 

  139. Ionescu NI, Căldăraru M (2008) Desorption kinetics in the ZnO nanopowder/O2 system. Rev Roum Chim 53:603–605

    Google Scholar 

  140. Ionescu NI, Căldăraru M (2010) Adsorption kinetics in the system ZnO fine powder/O2. Rev Roum Chim 55:365–367

    Google Scholar 

  141. Saito S, Miyayama M, Koumoto K et al (1985) Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics. J Am Ceram Soc 68:40–43

    Article  Google Scholar 

  142. Ivetić TB, Dimitrievska MR, Finčur NL et al (2014) Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceram Int 40:1545–1552

    Article  Google Scholar 

  143. Baratto C, Sberveglieri G, Onischuk A et al (2004) Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sens Actuators B 100:261–265

    Article  Google Scholar 

  144. Dikovska AO, Atanasov PA, Andreev A et al (2007) ZnO thin film on side polished optical fiber for gas sensing applications. Appl Surf Sci 254:1087–1090

    Article  Google Scholar 

  145. Zhou Q, Chen W, Xu L et al (2013) Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties. Sensors 13:6171–6182

    Article  Google Scholar 

  146. Wang W, Tian Y, Wang X et al (2013) Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J Mater Sci 48:3232–3238

    Article  Google Scholar 

  147. Makkar M, Bhatti HS, Singh K (2014) Effect of reaction conditions on the morphology and optical properties of ZnO nanocrystals. J Mater Sci 25:4822–4829

    Google Scholar 

  148. Kiomarsipour N, Razavi RS (2012) Characterization and optical property of ZnO nano- submicro- and microrods synthesized by hydrothermal method on a large-scale. Superlattice Microst 52:704–710

    Article  Google Scholar 

  149. Wahab R, Mishra A, Yu SI et al (2012) Fabrication, growth mechanism and antibacterial activity of ZnO micro-spheres prepared via solution process. Biomass Bioenerg 39:227–236

    Article  Google Scholar 

  150. Moulahi A, Sediri F, Gharbi N (2012) Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties. Mater Res Bull 47:667–671

    Article  Google Scholar 

  151. Senol SD, Ozturk O, Terzioğlu C (2015) Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram Int 41:11194–11201

    Article  Google Scholar 

  152. Wang H, Li C et al (2013) Synthesis, characterization, and electrical conductivity of ZnO with different morphologies. Powder Technol 239:266–271

    Article  Google Scholar 

  153. Zhao X, Lou F, Li M et al (2014) Sol−gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications. Ceram Int 40:5507–5514

    Article  Google Scholar 

  154. Gao YJ, Zhang WC, Wu XL et al (2008) Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics. Appl Surf Sci 255:1982–1987

    Article  Google Scholar 

  155. Rayerfrancis A, Bhargav PB, Ahmed N et al (2015) Effect of pH on the morphology of ZnO nanostructures and its influence on structural and optical properties. Phys B 457:96–102

    Article  Google Scholar 

  156. Aimable A, Buscaglia MT, Buscaglia V et al (2010) Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. J Eur Ceram Soc 30:591–598

    Article  Google Scholar 

  157. Li MK, Wang DZ et al (2007) Synthesis and properties of aligned ZnO microtube arrays. Appl Surf Sci 253:4161–4165

    Article  Google Scholar 

  158. Ayadi ZB, El Mir L, Djessas K et al (2011) Effect of substrate temperature on the properties of Al-doped ZnO films sputtered from aerogel nanopowders for solar cells applications. Thin Solid Films 519:7572–7574

    Article  Google Scholar 

  159. Pholnak C, Sirisathitkul C, Harding DJ (2011) Characterizations of octahedral zinc oxide synthesized by sonochemical method. J Phys Chem Solids 72:817–823

    Article  Google Scholar 

  160. Krishnakumar T, Jayaprakash R, Pinna N et al (2009) Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Mater Lett 63:242–245

    Article  Google Scholar 

  161. Kumar VR, Kavitha VT, Wariar RS et al (2011) Characterization, sintering and dielectric properties of nanocrystalline zinc oxide prepared by a citric acid-based combustion route. J Phys Chem Solids 72:290–293

    Article  Google Scholar 

  162. Schuler T, Aegerter MA (1999) Optical, electrical and structural properties of sol-gel ZnO:Al coatings. Thin Solid Films 351:125–131

    Article  Google Scholar 

  163. Rajeswari Yogamalar N, Chandra Bose A (2011) Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor. J Solid State Chem 184:12–20

    Article  Google Scholar 

  164. Li S, Gross GA, Günther PM et al (2011) Hydrothermal micro continuous-flow synthesis of spherical, cylinder-, star- and flower-like ZnO microparticles. Chem Eng J 167:681–687

    Article  Google Scholar 

  165. Cimitan S, Albonetti S, Forni L et al (2009) Solvothermal synthesis and properties control of doped ZnO nanoparticles. J Coll Interf Sci 329:73–80

    Article  Google Scholar 

  166. Reddy AJ, Krishna RH, Nagabhushana BM et al (2015) Synthesis, luminescence properties and EPR investigation of hydrothermally derived uniform ZnO hexagonal rods. Spectrochim Acta A 139:262–270

    Article  Google Scholar 

  167. Jiang XH, Ma SY, Li WQ et al (2015) Synthesis of hierarchical ZnO nanostructure assembled by nanorods and their performance for gas sensing. Mater Lett 142:299–303

    Article  Google Scholar 

  168. Demoisson F, Piolet R, Bernard F (2015) Hydrothermal growth of ZnO nanostructures in supercritical domain: effect of the metal salt concentration (Zn(NO3)2) in alkali medium (KOH). J Supercrit Fluid 97:268–274

    Article  Google Scholar 

  169. Palumbo M, Henley SJ, Lutz T et al (2008) A fast sonochemical approach for the synthesis of solution processable ZnO rods. J Appl Phys 104:074906

    Article  Google Scholar 

  170. Suchanek WL (2009) Systematic study of hydrothermal crystallization of zinc oxide (ZnO) nano-sized powders with superior UV attenuation. J Cryst Growth 312:100–108

    Article  Google Scholar 

  171. Lu CH, Lai YC, Kale RB (2009) Influence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders. J Alloy Compd 477:523–528

    Article  Google Scholar 

  172. Jiang H, Hu J, Gu F et al (2009) Template-free approach for hydrothermal fabrication of ZnO microspheres. Particuology 7:225–228

    Article  Google Scholar 

  173. Goswami N, Sharma DK (2010) Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique. Phys E 42:1675–1682

    Article  Google Scholar 

  174. Srikanth CK, Jeevanandam P (2009) Effect of anion on the homogeneous precipitation of precursors and their thermal decomposition to zinc oxide. J Alloys Compd 486:677–684

    Article  Google Scholar 

  175. Lupan O, Pauporte T, Tiginyanu IM et al (2011) Optical properties of ZnO nanowire arrays electrodeposited on n- and p-type Si(111): effects of thermal annealing. Mater Sci Eng B 176:1277–1284

    Article  Google Scholar 

  176. Andres-Vergés M, Mifsud A, Serna CJ (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86:959–963

    Article  Google Scholar 

  177. Ahsanulhaq Q, Kim SH, Hahn YB (2009) A templateless surfactant-free seedless aqueous route to single-crystalline ZnO nanowires synthesis. J Phys Chem Solids 70:627–631

    Article  Google Scholar 

  178. Anas S, Mangalaraja RV, Ananthakumar S (2009) Studies on the evolution of ZnO morphologies in a thermohydrolysis technique and evaluation of their functional properties. J Hazardous Mater 175:889–895

    Article  Google Scholar 

  179. Polsongkram D, Chamninok P, Pukird S et al (2008) Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B 403:3713–3717

    Article  Google Scholar 

  180. Mihaiu S, Madarasz J, Pokol G et al (2013) Thermal behavior of ZnO precursor powders obtained from aqueous solutions. Rev Roum Chim 58:335–345

    Google Scholar 

  181. Ram SDG, Ravi G, Athimoolam A et al (2011) Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity. Appl Phys A 105:881–890

    Article  Google Scholar 

  182. Kiomarsipour N, Razavi RS (2013) Hydrothermal synthesis and optical property of scale-and spindle-like ZnO. Ceram Int 39:813–818

    Article  Google Scholar 

  183. Kiomarsipour N, Razavi RS (2014) Hydrothermal synthesis of ZnO nanopigments with high UV absorption and vis/NIR reflectance. Ceram Int 40:11261–11268

    Article  Google Scholar 

  184. Sun F, Qiao X, Tan F et al (2012) Fabrication and photocatalytic activities of ZnO arrays with different nanostructures. Appl Surf Sci 263:704–711

    Article  Google Scholar 

  185. Yin Y, Rioux RM, Erdonmez CK et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  Google Scholar 

  186. Liu B, Xue D (2008) Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv Mater 20:2622–2626

    Article  Google Scholar 

  187. Fan HJ, Kenz M, Scholz R et al (2006) Moncrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater 5:627–631

    Article  Google Scholar 

  188. Vayssieres L, Keis K, Lindquist SE (2001) Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J Phys Chem B 105:3350–3352

    Article  Google Scholar 

  189. Vayssieres L, Keis K, Lindquist SE (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395–4398

    Article  Google Scholar 

  190. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO. Adv Mater 15:464–466

    Article  Google Scholar 

  191. Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO–nanostructures, defects, and devices. Mater Today 10:40–48

    Article  Google Scholar 

  192. Ashfold MNR, Doherty RP, Ndifor-Angwafor NG et al (2007) The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515:8679–8683

    Article  Google Scholar 

  193. Baruah S, Dutta J (2009) pH-dependent growth of zinc oxide nanorods. J Cryst Growth 311:2549–2554

    Article  Google Scholar 

  194. Mridha S, Basak D (2009) Effect of concentration of hexamethylene tetramine on the structural morphology and optical properties of ZnO micro microrods grown by low-temperature solution approach. Phys Status Solidi (a) 206:1515–1519

    Article  Google Scholar 

  195. Duta M, Mihaiu S, Munteanu C et al (2015) Properties of In–N codoped p-type ZnO nanorods grown through a two-step chemical route. Appl Surf Sci 344:196–204

    Article  Google Scholar 

  196. Florica C, Preda N, Enculescu M et al (2014) Superhydrophobic ZnO networks with high water adhesion. Nanoscale Res Lett 92:122110

    Google Scholar 

  197. Guo T, Yo M-S, Lin Y-H et al (2012) A comprehensive review on synthesis methods for transitional-metal oxide nanostructure. Cryst Eng Com 17:3551–3585

    Article  Google Scholar 

  198. Devan RS, Pantil RA, Lin JH et al (2012) One dimensional metal oxide nanostructures: recent developments in synthesis, characterization and applications. Adv Struct Mat 22:3326–3370

    Google Scholar 

  199. Livage J (2010) Hydrothermal synthesis of nanostructured vanadium oxides. Materials 3:4175–4195

    Article  Google Scholar 

  200. Ajayan PM, Stephan O, Redlich P et al (1995) Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature 375:564–567

    Article  Google Scholar 

  201. Spahr ME, Bitterli P, Nesper R et al (1998) Redox active nanotube of vanadium oxides. Angew Chem Int Ed 37:1263–1265

    Article  Google Scholar 

  202. Nesper R, Muhr HJ (1998) Nanotubes-an outstanding set of nanoparticles. Chimia 52:571–578

    Google Scholar 

  203. Nesper R, Spahr ME, Niederberger M, Bitterli P (2001) Use and process for production of nanotubes. US20020127397 A1, 12 Sep 2002

    Google Scholar 

  204. Krumeich F, Muhr HJ, Niederberger M et al (1999) Morphology and topochemical reactions of novel vanadium oxide nanotubes. J Am Chem Soc 121:8324–8331

    Article  Google Scholar 

  205. Krumeich F, Muhr HJ, Niederberger M et al (2000) The cross-sectional structure of vanadium oxide nanotubes studied by transmission electron microscopy and electron spectroscopic imaging. Z Anorg Allg Chem 626:2208–2216

    Article  Google Scholar 

  206. Chandrappa GT, Steunou N, Cassaignon S et al (2003) Vanadium oxide: from gels to nanotubes. J Sol-Gel Sci Tehnol 26:593–596

    Article  Google Scholar 

  207. Chandrappa GT, Steunou N, Cassaignon S et al (2003) Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal Today 78:85–89

    Article  Google Scholar 

  208. Chen W, Peng J, Mai L et al (2004) Synthesis of vanadium oxide nanotubes form V2O5 sols. Mater Lett 58:2275–2278

    Article  Google Scholar 

  209. Sediri F, Touati F, Gharbi N (2007) A one-step hydrothermal way for the synthesis of vanadium oxide nanotubes containing the phenylpropylamine as template obtained via non-alkoxide route. Mater Lett 61:1946–1959

    Article  Google Scholar 

  210. Avansi W Jr, Ribeiro C, Leite ER et al (2009) Vanadium pentoxide nanostructures: an effective control of morphology and crystal structure in hydrothermal conditions. Cryst Growth Des 9:3626–3631

    Article  Google Scholar 

  211. Knafar E (2015) Production and identification of vanadium oxide nanotubes. Indian J Sci Technol 8:455–464

    Article  Google Scholar 

  212. Li H-Y, Qiu X, Dong M et al (2015) Tuned hydrothermal synthesis of vanadium dioxide nanotubes. Ceram Int 41:13967–13973

    Article  Google Scholar 

  213. Sun D, Kwon CW, Baure G et al (2004) The relationship between nanoscale structure and electrochemical properties of vanadium oxide nanorolls. Adv Funct Mater 14:1197–1204

    Article  Google Scholar 

  214. Mai L, Chen W, Xu Q et al (2003) Cost-saving synthesis of vanadium oxide nanotubes. Solid State Commun 126:541–543

    Article  Google Scholar 

  215. Sharma S, Thomas J, Ramanan A et al (2007) Hydrothermal synthesis of vanadium oxide nanotubes from oxide precursors. J Nanosci Nanotechnol 6:1985–1989

    Article  Google Scholar 

  216. Niederberger M, Muhr HJ, Krumeich F et al (2000) Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem Mater 12:1995–2000

    Article  Google Scholar 

  217. Petkov V, Zavalij PY, Lutta S et al (2004) Structure beyond Bragg study of V2O5 nanotubes. Phys Rev B 69:9085410

    Article  Google Scholar 

  218. Davidson P (2010) Vanadium pentoxide gels: From “chimie douce” to “matière molle”. CR Chim 13:142–153

    Article  Google Scholar 

  219. Mai LQ, Chen W, Xu Q et al (2003) Mo doped vanadium oxide nanotubes: microstructure and electrochemistry. Chem Phys Lett 382:307–312

    Article  Google Scholar 

  220. Zhang F, Zavalij PY, Whittinghm MS (1999) Synthesis and characterization of a pipe-structure manganese vanadium oxide by hydrothermal reaction. J Mater Chem 9:3137–3140

    Article  Google Scholar 

  221. Livage J (1991) Vanadium pentoxide gels. Chem Mater 3:578–643

    Article  Google Scholar 

  222. Muhr HJ, Krumeich F, Schonholzer UP et al (2000) Vanadium oxide nanotubes – a new vanadate nanophase. Adv Mater 12:231–234

    Article  Google Scholar 

  223. Chen X, Sun X, Li Y (2002) Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorg Chem 41:4524–4530

    Article  Google Scholar 

  224. Chen W, Mai LQ, Peng JF et al (2004) FTIR study of vanadium oxide nanotubes from lamellar structure. J Mater Sci 39:2625–2627

    Article  Google Scholar 

  225. Kweon H, Lee KW, Lee CE (2009) Coexisting structural phases in a two-dimensional vanadium oxide/surfactant nanostructure. Curr Appl Phys 9:691–693

    Article  Google Scholar 

  226. Sediri F, Gharbi N (2007) From crystalline V2O5 to nanostructurated vanadium oxides using aromatic amines as templates. J Phys Chem Solids 68:1821–1829

    Article  Google Scholar 

  227. Grigorieva AV, Goodilin EA, Anikina AV et al (2008) Surfactants in the formation of vanadium oxide nanotubes. Mendeleev Commun 18:71–72

    Article  Google Scholar 

  228. Renoso JM, Muhr HJ, Krumeich F et al (2000) Controlled uptake and release of metal cations by vanadium oxide nanotubes. Helv Chim Acta 83:1724–1733

    Article  Google Scholar 

  229. Corr SA, Grossman M, Furman JD et al (2008) Controlled reduction of vanadium oxide nanoscrolls; crystal structure, morphology and electrical properties. Chem Mater 20:6396–6404

    Article  Google Scholar 

  230. Vera-Robles LI, Campero LI (2008) A novel approach to vanadium oxide nanotubes by oxidation of V4+ species. J Phys Chem C 112:19930–19933

    Article  Google Scholar 

  231. Worle M, Krumeich F, Bieri F et al (2002) Flexible V7O16 layers as the common structural element of vanadium oxide nanotubes and a new crystalline vanadate. Z Anorg Allg Chem 628:2778–2784

    Article  Google Scholar 

  232. Sanchez C, Baonneau F, Morineau R et al (1983) Semiconducting properties of V2O5 gels. Phil Mag B 47:4073–4075

    Article  Google Scholar 

  233. Ivanoskaya VV, Enyashin AN, Sofronov AA et al (2003) Electronic properties of single-walled V2O5 nanotubes. Solid State Commun 126:489–493

    Article  Google Scholar 

  234. Enyahsin AN, Ivanovskaya VV, Makurin YN et al (2004) Electronic band structure of scroll-like divanadium pentoxide nanotubes. Phys Lett A 326:152–156

    Article  Google Scholar 

  235. Cao J, Musfeld JL, Mazumdar S et al (2007) Pinned low-energy electronic excitation in metal-exchange vanadium oxide nanoscrolls. Nano Lett 7:2351–2355

    Article  Google Scholar 

  236. Sipos B, Duchamp M, Magrez A et al (2009) Mechanical and electronic properties of vanadium oxide nanotubes. J Appl Phys 105:074317

    Article  Google Scholar 

  237. Webster S, Czerw R, Nesper R et al (2004) Optical properties of the vanadium oxide nanotubes. J Nanosci Nanotech 4:260–264

    Article  Google Scholar 

  238. Liu X, Täschner C, Leonhardt A et al (2005) Structural, optical and electronic properties of vanadium oxide nanotubes. Phys Rev B 72:115407

    Article  Google Scholar 

  239. Vavilova E, Hellmann I, Kataev V et al (2006) Magnetic properties of vanadium oxide nanotubes probed by static magnetization and 51V NMR. Phys Rev B73:144417

    Article  Google Scholar 

  240. Spahr ME, Stoschitzki-Bitterli P, Nesper R et al (1999) Vanadium oxide nanotubes, a new nanostructured redox-active material for the electrochemical insertion of lithium. J Electrochem Soc 146:2780–2783

    Article  Google Scholar 

  241. Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods – anisotropic modules for a future nanotechnology. Angew Chem Int Ed 41:2446–2461

    Article  Google Scholar 

  242. Chamran F, Yeh Y, Min H-S et al (2007) Fabrication of high-aspect-ratio electrode arrays for three-dimensional microbatteries. J Microelectromech Syst 6:844–852

    Article  Google Scholar 

  243. Li HX, Jiao LF, Yuan HT et al (2006) Factors affecting the electrochemical performances of vanadium oxide nanotube cathodic materials. Electrochem Commun 8:1693–1698

    Article  Google Scholar 

  244. Nordlinder S, Nyholm L, Gustafsson T et al (2006) Lithium insertion into vanadium oxide nanotubes: electrochemical and structural aspects. Chem Mater 18:495–503

    Article  Google Scholar 

  245. Mohan VM, Hu B, Qiu W et al (2009) Synthesis, structural and electrochemical performance of V2O5 nanotubes as cathode material for lithium battery. J Appl Electrochem 39:2001–2006

    Article  Google Scholar 

  246. Cui CJ, Wu GM, Sen J et al (2010) Synthesis and electrochemical performance of lithium vanadium oxide nanotubes as rechargeable lithium-ion batteries. Electrochim Acta 55:2536–2541

    Article  Google Scholar 

  247. Niederberger M, Krumeich F, Muhr HJ et al (2001) Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J Mater Chem 11:1941–1945

    Article  Google Scholar 

  248. Lou XW, Zeng HC (2002) Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem Mater 14:4781–4789

    Article  Google Scholar 

  249. Song RQ, Xu AW, Deng B et al (2005) Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: synthesis and characterization. J Phys Chem B 109:22758–22766

    Article  Google Scholar 

  250. Xia T, Li Q, Liu X et al (2006) Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J Phys Chem B 110:2006–2012

    Article  Google Scholar 

  251. Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686

    Article  Google Scholar 

  252. Gu Z, Zhai T, Gao B et al (2006) Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J Phys Chem B 110:23829–23836

    Article  Google Scholar 

  253. Zhao ZG, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem Int Ed 47:7051–7055

    Article  Google Scholar 

  254. Zhao ZG, Miyauchi M (2009) Shape modulation of tungstic acid and tungsten oxide hollow structures. J Phys Chem C 113:6539–6546

    Article  Google Scholar 

  255. Batzill M, Diebold U (2006) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  Google Scholar 

  256. Yin LX, Wang FF, Huang JF et al (2014) Influence of the reaction temperature on structure and performance of SnO2 nanocrystals prepared by microwave hydrothermal method. Mater Sci Forum 809–810:122–127

    Article  Google Scholar 

  257. Liu B, Zang L, Zhao H et al (2012) Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicron rods. Sens Actuators B Chem 173:643–651

    Article  Google Scholar 

  258. Matin BM, Mortazavi Y, Khodadadi AA et al (2010) Alkaline- and template-free hydrothermal synthesis of stable SnO2, nanoparticles and nanorods for CO and ethanol gas sensing. Sens Actuators B Chem 151:140–145

    Article  Google Scholar 

  259. Quin I, Xu J, Dong X et al (2008) The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19:185705

    Article  Google Scholar 

  260. Wang J, Du N, Zhang H et al (2011) Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. J Phys Chem C 115:11302–11305

    Article  Google Scholar 

  261. Wang C, Zhou Y, Ge M et al (2010) Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J Am Chem Soc 132:46–47

    Article  Google Scholar 

  262. Cao S, Zeng W, Zhang H, Li Y (2015) Hydrothermal synthesis of SnO2 nanosheets and their gas sensing properties. J Mater Sci Mater Electron 26:2871–2878

    Article  Google Scholar 

  263. Inderan V, Lim SY, Ong TS et al (2015) Synthesis and characterizations of SnO2 nanorods via low temperature hydrothermal method. Superlattices Microstruct 88:396–402

    Article  Google Scholar 

  264. Chakrabarty S, De K, Das S et al (2014) General route to synthesize metal (Ni, Co, Mn, Fe) oxide nanostructure and their optical and magnetic behavior. J Nanosci Nanotechnol 14:4236–4244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Authors

About this chapter

Cite this chapter

Anastasescu, C., Mihaiu, S., Preda, S., Zaharescu, M. (2016). Synthesis of Oxide Nanotubes/Nanorods by Hydrothermal Method. In: 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-32988-8_3

Download citation

Publish with us

Policies and ethics