Skip to main content

Synthesis of Oxide Nanotubes by Sol–Gel Method

  • Chapter
  • First Online:
1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 753 Accesses

Abstract

The great interest for the 1D oxide nanostructures, due to their specific and sometimes unexpected properties, led to the development of a great number of physical and chemical preparation methods. In the following chapter, the preparation of several oxide nanotubes by template-assisted sol–gel method is presented. The preparation, characterization, and properties of the SiO2 nano-/microtubes are approached in more details. The preparation was realized by sol–gel method in the presence of organic templates, namely, DL-tartaric acid, introduced in the reaction mixture. The resulted samples have been characterized from structural, morphological, and thermal point of view, and their specific catalytic and photocatalytic properties have been investigated. The resulted samples were nanometric in diameter, but micrometric in length and proved to be amorphous. The significant results have been obtained by testing the catalytic and photocatalytic activity of the un-doped and Pt-doped SiO2 nano-/microtubes for catalytic mineralization of formic acid and photocatalytic oxidation of oxalic acid to CO2, respectively. The behavior of the nanotubes could be considered as morphology dependent, the catalyst acting in fact as membrane-type microreactors. The preparation of some other 1D oxides nanostructures (TiO2, ZrO2, Nb2O5, Ta2O5, WO3, ZnO, Fe2O3, V2O5, ThO2 Eu2O3, Eu-doped ThO2, MnO2, ZnO, Co3O4, In2O3, Ga2O3, Al2O3, PbTiO3, BaTiO3) were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mokoena EM, Datye AK, Coville NJ (2003) A systematic study of the use of DL-tartaric acid in the synthesis of silica materials obtained by the sol-gel method. J Sol-Gel Sci Technol 28:307–317

    Article  Google Scholar 

  2. Ogihara H, Takenaka S, Yamanaka I et al (2006) Synthesis of SiO2 nanotubes and their application as nanoscale reactors. Chem Mater 18:996–1000

    Article  Google Scholar 

  3. Ogihara H, Sadakane M, Nodasaka Y et al (2006) Shape controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates. Chem Mater 18:4981–4983

    Article  Google Scholar 

  4. Kumaresavanji M, Sousa CT, Apolinario A et al (2015) Influence of sol-gel parameters in the fabrication of ferromagnetic La2/3Ca1/3MnO3 nanotube arrays. Mater Sci Eng B: Sol State Mater Adv Technol 200:117–123

    Article  Google Scholar 

  5. Xu Y, Wei J, Yao J et al (2008) Synthesis of CoFe2O4 nanotube arrays through an improved sol–gel template approach. Mater Lett 62:1403–1405

    Article  Google Scholar 

  6. Vasilescu CA, Trupina L, Vasile BS et al (2015) Characteristics of 5 mol% Ce3+-doped barium titanate nanowires prepared by a combined route involving sol–gel chemistry and polycarbonate membrane-templated process. J Nanopart Res 17:434

    Article  Google Scholar 

  7. Adachi M, Harada T, Harada M (1999) Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system. Langmuir 15:7097–7100

    Article  Google Scholar 

  8. Ono Y, Nakashima K, Sano M et al (1998) Organic gels are useful as a template for the preparation of hollow fiber silica. Chem Commun 18:1477–1478

    Google Scholar 

  9. Ji Q, Iwaura R, Kogiso M et al (2004) Direct sol-gel replication without catalyst in an aqueous gel system: from a lipid nanotube with a single bilayer wall to a uniform silica hollow cylinder with an ultrathin wall. Chem Mater 16:250–254

    Article  Google Scholar 

  10. Yuwono VM, Hartgerink JD (2007) Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir 23:5033–5038

    Article  Google Scholar 

  11. Lei S, Zhang J, Wang J et al (2010) Self-catalytic sol−gel synergetic replication of uniform silica nanotubes using an amino acid amphiphile dynamically growing fibers as template. Langmuir 26:4288–4295

    Article  Google Scholar 

  12. Xu S, Lu Y, Jiang Z et al (2006) Silica nanotubes-doped alginate gel for yeast alcohol dehydrogenase immobilization. J Mol Catal B: Enzym 43:68–73

    Article  Google Scholar 

  13. Neagu S, Preda S, Anastasescu C et al (2014) The functionalization of silica and titanate nanostructures with halotolerant protease. Rev Roum Chim 59:97–103

    Google Scholar 

  14. Lee SB, Mitchell DT, Trofin L et al (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separation. Science 296:2198–2200

    Article  Google Scholar 

  15. Son SJ, Reichel J, He B et al (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317

    Article  Google Scholar 

  16. Wang X, Yu G, Han X et al (2014) Biodegradable and multifunctional polymer micro-tubes for targeting photothermal therapy. Int J Mol Sci 15:11730–11741

    Article  Google Scholar 

  17. Anastasescu C, Anastasescu M, Zaharescu M et al (2012) Platinum-modified SiO2 with tubular morphology as efficient membrane-type microreactors for mineralization of formic acid. J Nanopart Res 14:1198

    Article  Google Scholar 

  18. Anastasescu C, Zaharescu M, Balint I (2009) Unexpected photocatalytic activity of simple and platinum modified tubular SiO2 for the oxidation of oxalic acid to CO2. Catal Lett 132:81–86

    Article  Google Scholar 

  19. Nemetschek T, Hofman U (1954) Notizen: Hohlfasern aus amorpher Kieselsäure. Z Naturforsh B 9:166–167

    Google Scholar 

  20. Nemetschek T, Hofman U (1953) Feine Fasern aus Kieselsäure. Z Naturforsh B 8:410–412b

    Google Scholar 

  21. Nakamura H, Matsui Y (1995) Silica gel nanotubes obtained by the sol-gel method. J Am Chem Soc 117:2651–2652

    Article  Google Scholar 

  22. Lim AR, Schueneman GT, Novak BM (1999) Solid state NMR of SiO2 nanotube coated ammonium tartrate crystal. Sol State Commun 110:333–338

    Article  Google Scholar 

  23. Nakamura H, Matsui Y (1995) The preparation of novel silica gel hollow tubes. Adv Mater 7:871–872

    Article  Google Scholar 

  24. Miyaji F, Davis SA, Charmant JPH et al (1999) Organic crystal templating of hollow silica fibers. Chem Mater 11:3021–3024

    Article  Google Scholar 

  25. Anastasescu C, Anastasescu M, Teodorescu VS et al (2010) SiO2 nanospheres and tubes obtained by sol-gel method. J Non-Cryst Solids 356:2634–2640

    Article  Google Scholar 

  26. Wiesendanger R (1994) Scanning probe microscopy and spectroscopy: methods and applications. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  27. Kim M, Hong J, Lee J et al (2008) Fabrication of silica coated multi-walled carbon nanotubes as the template. J Colloid Interface Sci 322:321–326

    Article  Google Scholar 

  28. Miyaji F, Tatematsu Y, Suyama Y (2001) Transition metal oxide tubes synthesized by using ammonium tartrate crystal template. J Ceram Soc Jpn 109:924–928

    Article  Google Scholar 

  29. Peng T, Hasegawa A, Qiu J et al (2003) Fabrication of titania tubule with high surface area and well-developed mesostructural walls by surfactant–mediated templating method. Chem Mater 15:2011–2016

    Article  Google Scholar 

  30. Jung JH, Kobayashi H, Bommel KJC et al (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447

    Article  Google Scholar 

  31. Kobayashi S, Hamasaki N, Suzuki M et al (2002) Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J Am Chem Soc 124:6550–6551

    Article  Google Scholar 

  32. Gundiah G, Mukhopadhyay S, Tumkurkar UG et al (2003) Hydrogel route to nanotubes of metal oxides and sulfates. J Mater Chem 13:2118–2122

    Article  Google Scholar 

  33. Suber L, Imperatori P, Ausanio G et al (2005) Synthesis, morphology and magnetic characterization of iron oxide nanowires and nanotubes. J Phys Chem B 109:7103–7109

    Article  Google Scholar 

  34. Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579

    Article  Google Scholar 

  35. Wu G, Zhang L, Cheng B et al (2004) Synthesis of Eu2O3 nanotube arrays through a facile sol−gel template approach. J Am Chem Soc 126:5976–5977

    Article  Google Scholar 

  36. Lin ZW, Kuang Q, Lian W et al (2006) Preparation and optical properties of ThO2 and Eu-Doped ThO2 nanotubes by sol gel method combined with porous anodic aluminum oxide template. J Phys Chem B 110:23007–23011

    Article  Google Scholar 

  37. Lakshmi B, Patrissi CJ, Martin CR (1997) Sol−Gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550

    Article  Google Scholar 

  38. Cheng B, Samulsky ET (2001) Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J Mater Chem 11:2901–290

    Article  Google Scholar 

  39. Bao J, Xu D, Zhou Q et al (2002) An array of concentric composite nanostructure of metal nanowires encapsulated in zirconia nanotubes: preparation, characterization, and magnetic properties. Chem Mater 14:4709–4713

    Article  Google Scholar 

  40. Xu H, Qin DH, Yang Z et al (2003) Fabrication and characterization of highly ordered zirconia nanowire arrays by sol gel template method. Mater Chem Phys 80:524–528

    Article  Google Scholar 

  41. Hernandez-Sanchez BA, Chang KS, Scancella MT et al (2005) Examination of size-induced ferroelectric phase transitions in template synthesized PbTiO3 nanotubes and nanofibers. Chem Mater 17:5909–5919

    Article  Google Scholar 

  42. Satish Kumar BC, Govindaraj A, Vogel EM et al (1997) Oxide nanotubes prepared using carbon nanotubes as templates. J Mater Res 12:604

    Article  Google Scholar 

  43. Scheel H, Zollfrank C, Greil P (2008) Luminescent silica nanotubes and nanowires: preparation from cellulose whisker templates and investigation of irradiation-induced luminescence. J Mater Res 24:1709–1715

    Article  Google Scholar 

  44. Limmer SJ, Seraji S, Wu Y et al (2002) Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv Funct Mater 12:59–64

    Article  Google Scholar 

  45. Jitianu A, Cacciaguerra T, Benoit S et al (2004) Synhtesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon 42:1147–1152

    Google Scholar 

  46. Jitianu A, Cacciauguerra T, Merger M-H et al (2004) New carbon multiwall nanotubes-TiO2 nanocomposites obtained by sol-gel method. J Non-Cryst Solids 345–346:596–600

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Authors

About this chapter

Cite this chapter

Anastasescu, C., Mihaiu, S., Preda, S., Zaharescu, M. (2016). Synthesis of Oxide Nanotubes by Sol–Gel Method. In: 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-32988-8_2

Download citation

Publish with us

Policies and ethics