Skip to main content

Introduction (General Considerations on the 1D Oxide Nanostructures)

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Since the discovery of the carbon nanotubes, the interest for obtaining analogue nanostructures based on inorganic materials increased considerably. Besides the layered d-metal dichalcogenides, followed by boron nitrides, boron carbides or boron carbonitrides, metallic nanotubes and nanowires, and so on, a wide range of data concerning the p-(Si, Al, Mg), d-(Ge, Ti, Zn, Nb, Ta, Zr, V, Mo), and f-(Dy, Tb, Eu) oxide 1D structure synthesis were reported. The book is focused on wet chemical methods of 1D-type oxide nanostructure preparation, as sol–gel and hydrothermal methods which are versatile, not expensive techniques, and thus appropriate for obtaining a wide range of oxide materials with tailored morphology and properties. Three specific oxides (SiO2, TiO2, ZnO) were selected in order to describe the principle of the sol–gel and hydrothermal preparation of the 1D oxide nanostructures, followed by discussion of other oxides synthesized by the mentioned method. The correlation between the tubular structure and the physicochemical properties of studied 1D oxide nanostructures was driving in unexpected and valuable results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Zakharova GS, Ivannovskaya VV, Volkov VL et al (2005) Nanotubes and related nanostructures of d-metal oxides: synthesis and computer design. Russ Chem Rev 74:587–618

    Article  Google Scholar 

  3. Rapoport L, Fleischer N, Tenne R (2005) Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J Mater Chem 15:1782–1788

    Article  Google Scholar 

  4. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084

    Article  Google Scholar 

  5. Miyamoto Y, Rubio A, Louie SG et al (1994) Electronic properties of tubule forms of hexagonal BC3. Phys Rev B 50:18360–18366

    Article  Google Scholar 

  6. Miyamoto Y, Rubio A, Louie SG et al (1994) Chiral tubules of hexagonal BC2N. Phys Rev B 50:4976–4979

    Article  Google Scholar 

  7. Teredesai PV, Deepak FL, Govindaraj A et al (2002) A Raman study of CdSe and ZnSe nanostructures. J Nanosci Nanotechnol 2:495–498

    Article  Google Scholar 

  8. Goldberger J, He R, Zhang Y et al (2003) Single-crystal gallium nitride nanotubes. Nature 422:599–602

    Article  Google Scholar 

  9. Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122

    Article  Google Scholar 

  10. Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141

    Article  Google Scholar 

  11. Sun Y, Yin Y, Mayers BT et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  Google Scholar 

  12. Sun Y, Xia Y (2004) Multiple-walled nanotubes made of metals. Adv Mater 16:264–268

    Article  Google Scholar 

  13. Nielsch K, Castano FJ, Matthias S et al (2005) Synthesis of cobalt/polymer multilayer nanotubes. Adv Eng Mater 7:217–221

    Article  Google Scholar 

  14. Li Y, Wang J, Deng Z et al (2001) Bismuth nanotubes: a rational low-temperature synthetic route. J Am Chem Soc 123:9904–9905

    Article  Google Scholar 

  15. Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc 125:1154–1155

    Article  Google Scholar 

  16. Jiang Z, Xie T, Wang GZ et al (2005) GeO2 nanotubes and nanorods synthesized by vapor phase reaction. Mater Lett 59:416–419

    Article  Google Scholar 

  17. Kasuga T, Hiramutsu M, Hoson A et al (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  Google Scholar 

  18. Albu SP, Ghicov A, Macak JM et al (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289

    Article  Google Scholar 

  19. Rout CS, Krishna SH, Vivekchand SRC et al (2006) Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem Phys Lett 418:586–590

    Article  Google Scholar 

  20. Zhan J, Bando Y, Hu J et al (2004) Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg Chem 43:2462–2464

    Article  Google Scholar 

  21. Rao CNR, Satishkumar BC, Govindaraj A (1997) Zirconia nanotubes. Chem Commun 16:1581–1582

    Article  Google Scholar 

  22. Wang Y, Takahashi K, Shang H et al (2005) Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J Phys Chem B 109:3085–3088

    Article  Google Scholar 

  23. Xu AW, Fang YP, You LP et al (2003) A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J Am Chem Soc 125:1494–1495

    Article  Google Scholar 

  24. Wu G, Zhang L, Cheng B et al (2004) Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach. J Am Chem Soc 126:5976–5977

    Article  Google Scholar 

  25. Okamoto K, Shook CJ, Bivona L et al (2004) Direct observation of wetting and diffusion in the hydrophobic interior of silica nanotubes. Nano Lett 4:233–239

    Article  Google Scholar 

  26. Mitchell DT, Lee SB, Trofin L et al (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865

    Article  Google Scholar 

  27. Lόpez T, Asomoza M, Picquart M et al (2005) Study of the sodium phenytoin effect on the formation of sol-gel SiO2 nanotubes by TEM. Opt Mater 27:1270–1275

    Article  Google Scholar 

  28. Adachi M, Murata Y, Harada M et al (2000) Formation of titania nanotubes with high photo-catalytic activity. Chem Lett 29:942–943

    Article  Google Scholar 

  29. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol 4:592–597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Authors

About this chapter

Cite this chapter

Anastasescu, C., Mihaiu, S., Preda, S., Zaharescu, M. (2016). Introduction (General Considerations on the 1D Oxide Nanostructures). In: 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-32988-8_1

Download citation

Publish with us

Policies and ethics