Skip to main content

Optimizing Nutrition for Endurance Training

  • Chapter
  • First Online:
Book cover Endurance Sports Medicine

Abstract

Appropriate nutrition for endurance sports training is required for optimizing performance as well as for preventing injuries and other overuse conditions. High-intensity training requires high-carbohydrate consumption for fuel, while lower-intensity training may be sustained with fats. The longer an endurance event lasts, the less stored carbohydrate (glycogen) remains in the muscle, and the greater the athlete’s body relies on the breakdown of lipids for energy. Endurance athletes know that nutrition influences aspects of performance such as fatigue levels, immunity, muscle catabolism, maintenance, and growth as well as coordination. The more committed endurance athletes become about their goals, the more often they make intentional modifications to their training diet. Nutritional optimization for the endurance athlete means determining the ideal mixture of the glycolytic, lipolytic, and ketogenic pathways to allow for peak athletic performance while maintaining energy balance, muscle mass, gastrointestinal comfort, and mental health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobs K, Sherman W. The efficacy of carbohydrate supplementation and chronic high carbohydrate diets for improving endurance performance. Int J Sport Nutr. 1999;9:92–115.

    Article  CAS  PubMed  Google Scholar 

  2. Sherman W, Brodowicz G, Wright D, Allen W, Simonsen J, Dernbach A. Effects of 4 hour pre-exercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;12:598–604.

    Google Scholar 

  3. Sherman W, Peden M, Wright D. Carbohydrate feedings 1 hour before exercise improves cycling performance. Am J Clin Nutr. 1991;54:866–70.

    CAS  PubMed  Google Scholar 

  4. Jentjens RLPG, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.

    Article  CAS  PubMed  Google Scholar 

  5. Nieman DC. Immunonutrition support for athletes. Nutr Rev. 2008;66(6):310–20.

    Article  PubMed  Google Scholar 

  6. Bolster DR, Pikosky MA, Gaine PC, et al. Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise. Am J Physiol Endocrinol Metab. 2005;289(4):E678–83.

    Article  CAS  PubMed  Google Scholar 

  7. Maughan RJ. Nutritional status, metabolic responses to exercise and implications for performance. Biochem Soc Trans. 2003;31(Pt 6):1267–9.

    Article  CAS  PubMed  Google Scholar 

  8. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002;283(4):E648–57.

    Article  CAS  PubMed  Google Scholar 

  9. Dougherty KA, Baker LB, Chow M, Kenney WL. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med Sci Sports Exerc. 2006;38(9):1650–8.

    Article  PubMed  Google Scholar 

  10. Baker LB, Dougherty KA, Chow M, Kenney WL. Progressive dehydration causes a progressive decline in basketball skill performance. Med Sci Sports Exerc. 2007;39(7):1114–23.

    Article  PubMed  Google Scholar 

  11. Winnick JJ, Davis JM, Welsh RS, Carmichael MD, Murphy EA, Blackmon JA. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005;37(2):306–15.

    Article  CAS  PubMed  Google Scholar 

  12. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3):E380–91.

    CAS  PubMed  Google Scholar 

  13. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76(6):2253–61.

    CAS  PubMed  Google Scholar 

  14. Lim CL, Byrne C, Chew SA, Mackinnon LT. Leukocyte subset responses during exercise under heat stress with carbohydrate or water intake. Aviat Space Environ Med. 2005;76(8):726–32.

    PubMed  Google Scholar 

  15. Morris JG, Nevill ME, Thompson D, Collie J, Williams C. The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high-intensity running at 30 degrees C. J Sports Sci. 2003;21(5):371–81.

    Article  PubMed  Google Scholar 

  16. Schröder S, Fischer A, Vock C, et al. Nutrition concepts for elite distance runners based on macronutrient and energy expenditure. J Athl Train. 2008;43(5):489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32.

    PubMed  Google Scholar 

  18. Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29 Suppl 1:S7–15.

    Article  PubMed  Google Scholar 

  19. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the female athlete triad-relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  20. Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  21. Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone. 2006;39(4):880–5.

    Article  CAS  PubMed  Google Scholar 

  22. Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest. 2008;31(10):932–8.

    Article  CAS  PubMed  Google Scholar 

  23. Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab. 1993;77(3):770–5.

    CAS  PubMed  Google Scholar 

  24. Stewart AD, Hannan J. Total and regional bone density in male runners, cyclists, and controls. Med Sci Sports Exerc. 2000;32(8):1373–7.

    Article  CAS  PubMed  Google Scholar 

  25. Loucks AB. Energy availability, not body fatness, regulates reproductive function in women. Exerc Sport Sci Rev. 2003;31(3):144.

    Article  PubMed  Google Scholar 

  26. Loucks AB, DiPietro L, Stachenfeld NS. The female athlete triad: do female athletes need to take special care to avoid low energy availability? Med Sci Sports Exerc. 2006;38(10):1694–700.

    Article  PubMed  Google Scholar 

  27. Holloway GP, Spriet LL. The metabolic systems: interaction of lipid and carbohydrate metabolism. In: Farrell P, Joyner M, Caiozzo V, editors. Advanced exercise physiology. 2nd ed. Philadelphia: Lippincott, Williams and Wilkins; 2012. p. 408–22.

    Google Scholar 

  28. Tipton KD. Protein requirements and recommendations for athletes: relevance of ivory tower arguments for practical recommendations. Clin Sports Med. 2007;26(1):17–36.

    Article  PubMed  Google Scholar 

  29. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.

    Article  PubMed  Google Scholar 

  30. Proceedings of the IOC Consensus Conference on Nutrition in Sport, 25-27 October 2010, Lausanne, Switzerland. J Sports Sci. 2011;29:S:1–36.

    Google Scholar 

  31. Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol. 2011;110(3):834–45.

    Article  CAS  PubMed  Google Scholar 

  32. Cox GR, Clark SA, Cox AJ, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34.

    Article  CAS  PubMed  Google Scholar 

  33. Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44 Suppl 1:S87–96.

    Article  PubMed  Google Scholar 

  34. Stellingwerff T, Spriet LL, Watt MJ, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290(2):380–8.

    Article  Google Scholar 

  35. Timothy Allen Olson—mindful mountain ultra runner. http://www.timothyallenolson.com. Accessed Nov 20, 2015.

  36. Zach bitter—ultra runner and coach. http://zachbitter.com/index.php. Accessed Nov 20, 2015.

  37. Hawley JA, Gibala MJ, Bermon S. Innovations in athletic preparation: role of substrate availability to modify training adaptation and performance. J Sports Sci. 2007;25:S115–24.

    Article  PubMed  Google Scholar 

  38. Position of the American Dietetic Association. Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.

    Article  Google Scholar 

  39. Berning J, Manore MM, Meyer NL. Nutrition and athletic performance before, during and after exercise: adapting the joint position statement into practical guidelines. Commissioned by Gatorade Sports Science Institute. 2010.

    Google Scholar 

  40. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  41. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7–8):669–77.

    Article  CAS  PubMed  Google Scholar 

  42. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44 Suppl 1:79–85.

    Article  PubMed Central  Google Scholar 

  43. Leiper JB. Fate of ingested fluids: Factors affecting gastric emptying and intestinal absorption of beverages in humans. Nutr Rev. 2015;73 Suppl 2:57–72.

    Article  PubMed  Google Scholar 

  44. Jeukendrup A. The new carbohydrate intake recommendations. Nestle Nutr Inst Workshop Ser. 2013;75:63–71.

    Article  PubMed  Google Scholar 

  45. Adamo KB, Tarnopolsky MA, Graham TE. Dietary carbohydrate and postexercise synthesis of proglycogen and macroglycogen in human skeletal muscle. Am J Physiol. 1998;275(2 Pt 1):E229–34.

    CAS  PubMed  Google Scholar 

  46. Nieman DC, Henson DA, Gojanovich G, et al. Influence of carbohydrate on immune function following 2 h cycling. Res Sports Med. 2006;14(3):225–37.

    Article  PubMed  Google Scholar 

  47. Bryhn M. Prevention of sports injuries by marine omega-3 fatty acids. J Am Coll Nutr. 2015;34:60–1.

    Article  PubMed  Google Scholar 

  48. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med. 2011;10(3):432–8.

    PubMed  PubMed Central  Google Scholar 

  49. Mickleborough TD. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab. 2013;23(1):83–96.

    Article  CAS  PubMed  Google Scholar 

  50. Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation. Curr Atheroscler Rep. 2004;6(6):461–7.

    Article  PubMed  Google Scholar 

  51. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab. 2007;292(1):E71–6.

    Article  CAS  PubMed  Google Scholar 

  52. Nelson AR, Phillips SM, Faulkner JA, et al. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2015;47(3):547–55.

    Article  PubMed  Google Scholar 

  53. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld HS. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2): 377–390.

    Google Scholar 

  54. Hew-Butler T, Rosner MH, Fowkes-Godek S, et al. Statement of the 3rd international exercise-associated hyponatremia consensus development conference, Carlsbad, California, 2015. Br J Sports Med. 2015;49(22):1432–46.

    Article  PubMed  Google Scholar 

  55. Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29:S91–9.

    Article  PubMed  Google Scholar 

  56. DellaValle DM, Haas JD. Iron status is associated with endurance performance and training in female rowers. Med Sci Sports Exerc. 2012;44(8):1552–9.

    Article  CAS  PubMed  Google Scholar 

  57. Clark SF. Iron deficiency anemia: diagnosis and management. Curr Opin Gastroenterol. 2009;25(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  58. McClung JP, Gaffney-Stomberg E, Lee JJ. Female athletes: a population at risk of vitamin and mineral deficiencies affecting health and performance. J Trace Elem Med Biol. 2014;28(4):388–92.

    Article  CAS  PubMed  Google Scholar 

  59. Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  60. Buratti P, Gammella E, Rybinska I, Cairo G, Recalcati S. Recent advances in iron metabolism: relevance for health, exercise, and performance. Med Sci Sports Exerc. 2015;47(8):1596–604.

    Article  CAS  PubMed  Google Scholar 

  61. Hinton PS, Sanford TC, Davidson MM, Yakushko OF, Beck NC, Hinton PS. Nutrient intakes and dietary behaviors of male and female collegiate athletes. Int J Sport Nutr Exerc Metab. 2004;14(4):389–405.

    Article  CAS  PubMed  Google Scholar 

  62. Hollis BW, Sorenson MB, Taft TN, Anderson JJB, Cannell JJ. Athletic performance and vitamin D. Med Sci Sports Exerc. 2009;41(5):1102–10.

    Article  PubMed  Google Scholar 

  63. Todd JJ, Pourshahidi LK, McSorley EM, Madigan SM, Magee PJ. Vitamin D: recent advances and implications for athletes. Sports Med. 2015;45(2):213–29.

    Article  PubMed  Google Scholar 

  64. Calton EK, Keane KN, Newsholme P, Soares MJ. The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS One. 2015;10(11), e0141770.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Knez, Wade L., Jenkins, David G., Coombes, Jeff S. Oxidative stress in half and full Ironman triathletes. Med Sci Sports Exerc. 2007;39(2):283–8.

    Google Scholar 

  66. Nieman DC, Henson, Dru A., Mcanulty, Steven R., Mcanulty, Lisa S., Morrow, Jason D., Ahmed, Alaa, Heward, Chris B. Vitamin E and immunity after the Kona Triathlon world championship. Med Sci Sports Exerc. 2004;36(8):1328–35.

    Google Scholar 

  67. Slattery K, Bentley D, Coutts AJ. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: Implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015;45(4):453–71.

    Article  PubMed  Google Scholar 

  68. Buell JL, Franks R, Ransone J, Powers ME, Laquale KM, Carlson-Phillips A, National Athletic Trainers’ Association. National Athletic Trainers’ Association position statement: evaluation of dietary supplements for performance nutrition. J Athl Train. 2013;48(1):124–36.

    PubMed  PubMed Central  Google Scholar 

  69. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(2):175–84.

    Article  PubMed Central  Google Scholar 

  70. Spriet LL, Graham TE. Caffeine and exercise performance. ACSM current comment http://www.acsm.org/docs/current-comments/caffeineandexercise.pdf. Accessed Nov 20, 2015.

  71. Jones AM. Dietary nitrate supplementation and exercise performance. Sports Med. 2014;44:35–45.

    Article  PubMed Central  Google Scholar 

  72. Hobson RM, Saunders B, Ball G, Harris RC, Sale C. Effects of beta-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2011;43(1):25–37.

    Article  Google Scholar 

  73. Trexler ET, Smith-Ryan A, Stout JR, et al. International society of sports nutrition position stand: beta-alanine. J Int Soc Sport Nutr. 2015;12:30.

    Google Scholar 

  74. Kendall KL, Moon JR, Fairman CM, et al. Ingesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men. Nutr Res. 2014;34(5):442–9.

    Article  CAS  PubMed  Google Scholar 

  75. McCormack WP, Stout JR, Emerson NS, et al. Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: a randomized, placebo-controlled study. Exp Gerontol. 2013;48(9):933–9.

    Article  CAS  PubMed  Google Scholar 

  76. Spradley BD, Crowley KR, Tai CY, et al. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr Metab. 2012;9:28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackie Buell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buell, J. (2016). Optimizing Nutrition for Endurance Training. In: Miller, T. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-32982-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32982-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32980-2

  • Online ISBN: 978-3-319-32982-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics