Skip to main content

Clinical Considerations of Bike Fitting for the Triathlete

  • Chapter
  • First Online:

Abstract

Over the last 15 years, the visibility and popularity of the sport of triathlon has grown tremendously, and it is now a major Olympic event. Injury rates in triathlon have been shown to be as high as 91 %. The cycling portion of any triathlon distance (sprint, Olympic, half iron, full iron, or ultra) comprises approximately 75–80 % of the total race. Thus, considerations pertaining to bike fit, injury, and performance are extremely important to the sport of triathlon regardless of the distance. Lower extremity joints are affected the most during cycling and are influenced by a variety of factors including workload, foot position on the pedal, seat tube angle, and saddle height. Cycling position in triathlon is a balancing act between maximal power output, comfort, and aerodynamics. The purpose of this chapter is not to develop the clinician into a bike fitter but to serve as a resource to assist the clinician in treating triathletes particularly with a focus on the cycling aspect of their sport. The focus of this chapter will be to briefly discuss the limited history of triathlon, the relationships between cycling and injury in the triathlete, and the biomechanics of a bike fitting specific to the triathlete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Egermann M, Brocai D, Lill C, Schmitt H. Analysis of injuries in long-distance triathletes. Int J Sports Med. 2003;24(4):271–6.

    Article  CAS  PubMed  Google Scholar 

  2. USA Triathlon. 2015. http://www.usatriathlon.org/. Accessed 31 Aug 2015.

  3. Bertola IP, Sartori RP, Corrêa DG, Zotz TGG, Gomes ARS. Profile of injuries prevalence in athletes who participated in SESC Triathlon Caiobá-2011. Acta Ortop Bras. 2014;22(4):191–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vleck VE, Bentley DJ, Millet GP, Cochrane T. Triathlon event distance specialization: training and injury effects. J Strength Cond Res. 2010;24(1):30–6.

    Article  PubMed  Google Scholar 

  5. Strock GA, Cottrell ER, Lohman JM. Triathlon. Phys Med Rehabil Clin N Am. 2006;17(3):553–64.

    Article  PubMed  Google Scholar 

  6. Wilk BR, Fisher KL, Rangelli D. The incidence of musculoskeletal injuries in an amateur triathlete racing club. J Orthop Sports Phys Ther. 1995;22(3):108–12.

    Article  CAS  PubMed  Google Scholar 

  7. Cipriani DJ, Swartz JD, Hodgson CM. Triathlon and the multisport athlete. J Orthop Sports Phys Ther. 1998;27(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  8. Levy C, Kolin E, Berson B. The effect of cross training on injury incidence, duration, and severity (part 2). Sports Med Clin Forum. 1986;3:1–8.

    CAS  Google Scholar 

  9. O’Toole ML, Hiller WDB, Smith RA, Sisk TD. Overuse injuries in ultraendurance triathletes. Am J Sports Med. 1989;17(4):514–8.

    Article  PubMed  Google Scholar 

  10. Galera O, Gleizes-Cervera S, Pillard F, Riviere D. Prevalence of injuries in triathletes from a French league. Apunts Med Esport. 2012;47(173):9–15.

    Article  Google Scholar 

  11. Zwingenberger S, Valladares RD, Walther A, Beck H, Stiehler M, Kirschner S, et al. An epidemiological investigation of training and injury patterns in triathletes. J Sports Sci. 2014;32(6):583–90.

    Article  PubMed  Google Scholar 

  12. Dettori NJ, Norvell DC. Non-traumatic bicycle injuries. Sports Med. 2006;36(1):7–18.

    Article  PubMed  Google Scholar 

  13. Wilber C, Holland G, Madison R, Loy S. An epidemiological analysis of overuse injuries among recreational cyclists. Int J Sports Med. 1995;16(3):201–6.

    Article  CAS  PubMed  Google Scholar 

  14. Clarsen B, Krosshaug T, Bahr R. Overuse injuries in professional road cyclists. Am J Sports Med. 2010;38(12):2494–501.

    Article  PubMed  Google Scholar 

  15. Deakon RT. Chronic musculoskeletal conditions associated with the cycling segment of the triathlon; prevention and treatment with an emphasis on proper bicycle fitting. Sports Med Arthroscopy Rev. 2012;20(4):200–5.

    Article  Google Scholar 

  16. Ericson MO, Nisell R, Németh G. Joint motions of the lower limb during ergometer cycling. J Orthop Sports Phys Ther. 1988;9(8):273–8.

    Article  Google Scholar 

  17. Fonda B, Sarabon N. Biomechanics of cycling. Sport Sci Rev. 2010;19(1–2):187–210.

    Google Scholar 

  18. Bini MR, Hume PA, Croft JL. Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Med. 2011;41(6):463–76.

    Article  PubMed  Google Scholar 

  19. Chapman AR, Vicenzino B, Blanch P, Knox JJ, Dowlan S, Hodges PW. The influence of body position on leg kinematics and muscle recruitment during cycling. J Sci Med Sport. 2008;11(6):519–26.

    Article  PubMed  Google Scholar 

  20. Bini RR, Hume PA, Kilding AE. Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. Eur J Sport Sci. 2014;14(1):44–52.

    Article  PubMed  Google Scholar 

  21. Wolchok JC, Hull M, Howell SM. The effect of intersegmental knee moments on patellofemoral contact mechanics in cycling. J Biomech. 1998;31(8):677–83.

    Article  CAS  PubMed  Google Scholar 

  22. Ericson MO, Nisell R. Patellofemoral joint forces during ergometric cycling. Phys Ther. 1987;67(9):1365–9.

    CAS  PubMed  Google Scholar 

  23. Bressel E. The influence of ergometer pedaling direction on peak patellofemoral joint forces. Clin Biomech. 2001;16(5):431–7.

    Article  CAS  Google Scholar 

  24. Ruby P, Hull M, Hawkins D. Three-dimensional knee joint loading during seated cycling. J Biomech. 1992;25(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  25. Bousie JA, Blanch P, McPoil TG, Vicenzino B. Contoured in-shoe foot orthoses increase mid-foot plantar contact area when compared with a flat insert during cycling. J Sci Med Sport. 2013;16(1):60–4.

    Article  PubMed  Google Scholar 

  26. Hoes MJ, Binkhorst R, Smeekes-Kuyl AE, Vissers AC. Measurement of forces exerted on pedal and crank during work on a bicycle ergometer at different loads. Eur J Appl Physiol Occup Physiol. 1968;26(1):33–42.

    Article  CAS  Google Scholar 

  27. Bertucci W, Grappe F, Groslambert A. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics. J Appl Biomech. 2007;23(2):87.

    Article  PubMed  Google Scholar 

  28. Atkinson G, Peacock O, Gibson ASC, Tucker R. Distribution of power output during cycling. Sports Med. 2007;37(8):647–67.

    Article  PubMed  Google Scholar 

  29. Cockcroft SJ. An evaluation of inertial motion capture technology for use in the analysis and optimization of road cycling kinematics. Stellenbosch: University of Stellenbosch; 2011.

    Google Scholar 

  30. Candau RB, Grappe F, Ménard M, Barbier B, Millet GY, Hoffman MD, et al. Simplified deceleration method for assessment of resistive forces in cycling. Med Sci Sports Exerc. 1999;31:1441–7.

    Article  CAS  PubMed  Google Scholar 

  31. Di Prampero PE. Cycling on earth, in space, on the moon. Eur J Appl Physiol. 2000;82(5–6):345–60.

    Article  PubMed  Google Scholar 

  32. Martin JC, Milliken DL, Cobb JE, McFadden KL, Coggan AR. Validation of a mathematical model for road cycling power. J Appl Biomech. 1998;14:276–91.

    Article  Google Scholar 

  33. Debraux P, Grappe F, Manolova AV, Bertucci W. Aerodynamic drag in cycling: methods of assessment. Sports Biomech. 2011;10(3):197–218.

    Article  PubMed  Google Scholar 

  34. Fintelman D, Sterling M, Hemida H, Li FX. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy. J Biomech. 2014;47(8):1894–8.

    Article  CAS  PubMed  Google Scholar 

  35. Empfield D. The F.I.S.T. Method for fitting triathletes to their bikes. 2007. http://www.slowtwitch.com/Bike_Fit/F.I.S.T._Tri_bike_fit_system/The_F.I.S.T._Method_for_fitting_triathletes_to_their_bikes_16.html.

  36. Lohr J, Timmerman M. Trek ten-step triathlon fitting manual. Madison, WI: University of Wisconsin; 2013. Trek Fit Services.

    Google Scholar 

  37. Pruitt A. Body Geometry bicycle fit course. 5th ed. Morgan Hill: Specialized Bicycle Components, INC; 2008. p. 1–80.

    Google Scholar 

  38. Peeling P, Bishop D, Landers G. Effect of swimming intensity on subsequent cycling and overall triathlon performance. Br J Sports Med. 2005;39(12):960–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silder A, Gleason K, Thelen DG. Influence of bicycle seat tube angle and hand position on lower extremity kinematics and neuromuscular control: implications for triathlon running performance. J Appl Biomech. 2011;27(4):297–305.

    Article  PubMed  Google Scholar 

  40. Ferrer-Roca V, Roig A, Galilea P, García-López J. Influence of saddle height on lower limb kinematics in well-trained cyclists: Static vs. dynamic evaluation in bike fitting. J Strength Cond Res. 2012;26(11):3025–9.

    Article  PubMed  Google Scholar 

  41. Holmes J, Pruitt A, Whalen N. Lower extremity overuse in bicycling. Clin Sports Med. 1994;13(1):187–205.

    CAS  PubMed  Google Scholar 

  42. Fonda B, Sarabon N, Li FX. Validity and reliability of different kinematics methods used for bike fitting. J Sports Sci. 2014;32(10):940–6.

    Article  PubMed  Google Scholar 

  43. Hogg S. Footloose. 2010. http://bicyclingaustralia.com.au/content/2010/steve-hogg/footloose.

  44. Pruitt AL, Matheny F. Andy Pruitt’s complete medical guide for cyclists. Boulder: VeloPress; 2006.

    Google Scholar 

  45. Barratt PR, Korff T, Elmer SJ, Martin JC. Effect of crank length on joint-specific power during maximal cycling. Med Sci Sports Exerc. 2011;43(9):1689–97.

    Article  PubMed  Google Scholar 

  46. Zinn L, Telander T. Zinn & the art of triathlon bikes. Boulder: VeloPress; 2007.

    Google Scholar 

  47. Atkinson G, Davison R, Jeukendrup A, Passfield L. Science and cycling: current knowledge and future directions for research. J Sports Sci. 2003;21(9):767–87.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Briggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Briggs, M.S., Obermire, T. (2016). Clinical Considerations of Bike Fitting for the Triathlete. In: Miller, T. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-32982-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32982-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32980-2

  • Online ISBN: 978-3-319-32982-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics