Skip to main content

Fertility Risk with Cancer Therapy

  • Chapter
  • First Online:
Pediatric and Adolescent Oncofertility

Abstract

Advances in cancer treatments have significantly changed the outcome for pediatric cancers with 5-year survival rates approaching 75–80 %. With improvements in treatment, 1 in 25 cancer survivors will be of reproductive age [1]. Fertility compromise occurs in 8–12 % of female survivors [2] and one-third of adult male survivors of childhood cancer [3]. Manifestations of gonadal injury include disordered puberty from hormonal deficiency, decreased reproductive and sexual function, psychosocial effects, and menopause-related health problems in female survivors such as cardiac, skeletal, and cognitive dysfunction. Standard options for fertility preservation include sperm, oocyte, and embryo banking. Investigational options include testicular, ovarian, and immature oocyte cryopreservation [4, 5]. Most options are invasive and costly, and standard options in females require a minimum of 2 weeks of intervention prior to proceeding with cancer treatment [6]. Estimating risk prior to therapy allows determination and implementation of the appropriate fertility preserving therapies. Identifying agents that protect the ovary prior to and during cancer therapy may mitigate the need for invasive and costly fertility preserving therapies while preserving hormonal function after cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer treatment and survivorship facts & figures. Atlanta, Georgia; 2014.

    Google Scholar 

  2. Geenen MM, Cardous-Ubbink MC, Kremer LCM, van den Bos C, van der Pal HJH, Heinen RC, et al. Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. J Am Med Assoc. 2007;297(24):2705–15.

    Article  CAS  Google Scholar 

  3. Rendtorff R, Hohmann C, Reinmuth S, Muller A, Dittrich R, Beyer M, et al. Hormone and sperm analyses after chemo- and radiotherapy in childhood and adolescence. Klin Padiatr. 2010;222(3):145–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ayensu-Coker L, Bauman D, Lindheim SR, Breech L. Fertility preservation in pediatric, adolescent and young adult female cancer patients. Pediatr Endocrinol Rev. 2012;10(1):174–87.

    PubMed  Google Scholar 

  5. Osterberg EC, Ramasamy R, Masson P, Brannigan RE. Current practices in fertility preservation in male cancer patients. Urol Ann. 2014;6(1):13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coyne K, Purdy M, O’Leary K, Yaklic JL, Lindheim SR, Appiah LA. Challenges and considerations in optimizing ovarian stimulation protocols in oncofertility patients. Front Public Health. 2014;2:246.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Djaladat H. Organ-sparing surgery for testicular tumours. Curr Opin Urol. 2015;25(2):116–20.

    Article  PubMed  Google Scholar 

  8. Ntali G, Karavitaki N. Efficacy and complications of pituitary irradiation. Endocrinol Metab Clin N Am. 2015;44(1):117–26.

    Article  Google Scholar 

  9. Pettus JA, Carver BS, Masterson T, Stasi J, Sheinfeld J. Preservation of ejaculation in patients undergoing nerve-sparing postchemotherapy retroperitoneal lymph node dissection for metastatic testicular cancer. Urology. 2009;73(2):328–31.

    Article  PubMed  Google Scholar 

  10. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100(5):1180–6.

    Article  CAS  PubMed  Google Scholar 

  11. Meistrich ML, Wilson G, Mathur K, Fuller LM, Rodriguez MA, McLaughlin P, et al. Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine, and prednisone chemotherapy for hodgkin’s disease. J Clin Oncol. 1997;15(12):3488–95.

    CAS  PubMed  Google Scholar 

  12. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7.

    Article  CAS  Google Scholar 

  13. Green DM, Liu W, Kutteh WH, Ke RW, Shelton KC, Sklar CA, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang M, Jiang W, Li G, Xu C. Ovarian masses in children and adolescents – an analysis of 521 clinical cases. J Pediatr Adolesc Gynecol. 2014;27(3):e73–7.

    Article  PubMed  Google Scholar 

  15. Cass DL, Hawkins E, Brandt ML, Chintagumpala M, Bloss RS, Milewicz AL, et al. Surgery for ovarian masses in infants, children, and adolescents: 102 consecutive patients treated in a 15-year period. J Pediatr Surg. 2001;36(5):693–9.

    Article  CAS  PubMed  Google Scholar 

  16. Grigsby TJ, Kent EE, Montoya MJ, Sender LS, Morris RA, Ziogas A, et al. Attitudes toward cancer clinical trial participation in young adults with a history of cancer and a healthy college student sample: a preliminary investigation. J Adolesc Young Adult Oncol. 2014;3(1):20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. diZerega GS. The peritoneum and its response to surgical injury. Prog Clin Biol Res. 1990;358:1–11.

    CAS  PubMed  Google Scholar 

  18. Practice Committee of the American Society for Reproductive Medicine, Society of Reproductive Surgeons. Pathogenesis, consequences, and control of peritoneal adhesions in gynecologic surgery. Fertil Steril. 2007;88(1):21–6.

    Article  Google Scholar 

  19. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6):535–43.

    Article  CAS  PubMed  Google Scholar 

  20. Meirow D, Dor J, Kaufman B, Shrim A, Rabinovici J, Schiff E, et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 2007;22(6):1626–33.

    Article  CAS  PubMed  Google Scholar 

  21. Larsen EC, Muller J, Rechnitzer C, Schmiegelow K, Andersen AN. Diminished ovarian reserve in female childhood cancer survivors with regular menstrual cycles and basal fsh < 10 iu/i. Hum Reprod. 2003;18(2):417–22.

    Article  CAS  PubMed  Google Scholar 

  22. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27(16):2677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wallace WHB, Thomson AB, Saran F, Kelsey TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62(3):738–44.

    Article  PubMed  Google Scholar 

  24. Larsen EC, Schmiegelow K, Rechnitzer C, Loft A, Muller J, Andersen AN. Radiotherapy at a young age reduces uterine volume of childhood cancer survivors. Acta Obstet Gynecol Scand. 2004;83(1):96–102.

    Article  PubMed  Google Scholar 

  25. Tucker MA, Dangio GJ, Boice JD, Strong LC, Li FP, Stovall M, et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med. 1987;317(10):588–93.

    Article  CAS  PubMed  Google Scholar 

  26. Green DM, Nolan VG, Srivastava DK, Leisenring W, Neglia JP, Sklar CA, et al. Quantifying alkylating agent exposure: evaluation of the cyclophosphamide equivalent dose-a report from the childhood cancer survivor study. J Clin Oncol. 2011;29(15):9547.

    CAS  Google Scholar 

  27. Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava D, Leisenring WM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2014;61(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  28. Munster PN, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol. 2012;30(5):533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerr JB, Hutt KJ, Cook M, Speed TP, Strasser A, Findlay JK, et al. Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat Med. 2012;18(8):1170–2. author reply 2–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10(4):353–63.

    Article  CAS  PubMed  Google Scholar 

  31. Abd-Allah SH, Shalaby SM, Pasha HF, El-Shal AS, Raafat N, Shabrawy SM, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy. 2013;15(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  32. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14.

    Article  CAS  PubMed  Google Scholar 

  33. Hancke K, Strauch O, Kissel C, Gobel H, Schafer W, Denschlag D. Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. Fertil Steril. 2007;87(1):172–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kaya H, Desdicioglu R, Sezik M, Ulukaya E, Ozkaya O, Yimaztepe A, et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? Fertil Steril. 2008;89(3):732–5.

    Article  CAS  PubMed  Google Scholar 

  35. Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KYF, Toscano NP, et al. In vivo delivery of fty720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril. 2011;95(4):1440–U289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ting AY, Petroff BK. Tamoxifen decreases ovarian follicular loss from experimental toxicant dmba and chemotherapy agents cyclophosphamide and doxorubicin in the rat. J Assist Reprod Genet. 2010;27(11):591–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mahran YF, El-Demerdash E, Nada AS, Ali AA, Abdel-Naim AB. Insights into the protective mechanisms of tamoxifen in radiotherapy-induced ovarian follicular loss: impact on insulin-like growth factor 1. Endocrinology. 2013;154(10):3888–99.

    Article  CAS  PubMed  Google Scholar 

  38. Sverrisdottir A, Nystedt M, Johansson H, Fornander T. Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial. Breast Cancer Res Treat. 2009;117(3):561–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, et al. Cyclophosphamide triggers follicle activation and “burnout”; as101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185):185ra62.

    Article  PubMed  Google Scholar 

  40. Skaznik-Wikiel ME, McGuire MM, Sukhwani M, Donohue J, Chu TJ, Krivak TC, et al. Granulocyte colony-stimulating factor with or without stem cell factor extends time to premature ovarian insufficiency in female mice treated with alkylating chemotherapy. Fertil Steril. 2013;99(7):2045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner NH, Partridge A, Sanna G, Di Leo A, Biganzoli L. Utility of gonadotropin-releasing hormone agonists for fertility preservation in young breast cancer patients: the benefit remains uncertain. Ann Oncol. 2013;24(9):2224–35.

    Article  CAS  PubMed  Google Scholar 

  42. Del Mastro L, Ceppi M, Poggio F, Bighin C, Peccatori F, Demeestere I, et al. Gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in cancer women: systematic review and meta-analysis of randomized trials. Cancer Treat Rev. 2014;40(5):675–83.

    Article  PubMed  Google Scholar 

  43. Oktay K, Sonmezer M, Oktem O, Fox K, Emons G, Bang H. Absence of conclusive evidence for the safety and efficacy of gonadotropin-releasing hormone analogue treatment in protecting against chemotherapy-induced gonadal injury. Oncologist. 2007;12(9):1055–66.

    Article  CAS  PubMed  Google Scholar 

  44. Loibl S, Gerber B. Gonadotropin-releasing hormone analogue for premenopausal women with breast cancer. JAMA. 2011;306(16):1760. author reply -1.

    Article  CAS  PubMed  Google Scholar 

  45. Moore HC, Unger JM, Phillips KA, Boyle F, Hitre E, Porter D, et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med. 2015;372(10):923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C, et al. Inhibition of the c-abl-tap63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15(10):1179–85.

    Article  CAS  PubMed  Google Scholar 

  47. Morgan S, Lopes F, Gourley C, Anderson RA, Spears N. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One. 2013;8(7):e70117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cherry SM, Hunt PA, Hassold TJ. Cisplatin disrupts mammalian spermatogenesis, but does not affect recombination or chromosome segregation. Mutat Res Genet Toxicol Environ Mutagen. 2004;564(2):115–28.

    Article  CAS  Google Scholar 

  49. Woodruff TK. Preserving fertility during cancer treatment. Nat Med. 2009;15(10):1124–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang-Rodriguez J, Lopez JP, Altuna X, Chu TS, Weisman RA, Ongkeko WM. Sti-571 (gleevec) potentiates the effect of cisplatin in inhibiting the proliferation of head and neck squamous cell carcinoma in vitro. Laryngoscope. 2006;116(8):1409–16.

    Article  CAS  PubMed  Google Scholar 

  51. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  52. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A. 2005;102(10):3766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eliopoulos N, Zhao J, Forner K, Birman E, Young YK, Bouchentouf M. Erythropoietin gene-enhanced marrow mesenchymal stromal cells decrease cisplatin-induced kidney injury and improve survival of allogeneic mice. Mol Ther. 2011;19(11):2072–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villanueva PD, Sanz-Ruiz R, Garcia AN, Santos MEF, Sanchez PL, Fernandez-Aviles F. Functional multipotency of stem cells: what do we need from them in the heart? Stem Cells Int. 2012;2012:817364.

    Google Scholar 

  55. Kilic S, Pinarli F, Ozogul C, Tasdemir N, Naz Sarac G, Delibasi T. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol. 2014;30(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  56. Roodhart JML, Daenen LGM, Stigter ECA, Prins HJ, Gerrits J, Houthuijzen JM, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20(3):370–83.

    Article  CAS  PubMed  Google Scholar 

  57. Otala M, Suomalainen L, Pentikainen MO, Kovanen P, Tenhunen M, Erkkila K, et al. Protection from radiation-induced male germ cell loss by sphingosine-1-phosphate. Biol Reprod. 2004;70(3):759–67.

    Article  CAS  PubMed  Google Scholar 

  58. Paris F, Perez GI, Fuks Z, Haimovitz-Friedman A, Nguyen H, Bose M, et al. Sphingosine 1-phosphate preserves fertility in irradiated female mice without propagating genomic damage in offspring. Nat Med. 2002;8(9):901–2.

    Article  CAS  PubMed  Google Scholar 

  59. Rose DP, Davis TE. Effects of adjuvant chemohormonal therapy on the ovarian and adrenal-function of breast-cancer patients. Cancer Res. 1980;40(11):4043–7.

    CAS  PubMed  Google Scholar 

  60. Dubey RK, Tyurina YY, Tyurin VA, Gillespie DG, Branch RA, Jackson EK, et al. Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Circ Res. 1999;84(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  61. Nathan L, Chaudhuri G. Antioxidant and prooxidant actions of estrogens: potential physiological and clinical implications. Semin Reprod Endocrinol. 1998;16(4):309–14.

    Article  CAS  PubMed  Google Scholar 

  62. Hayun M, Naor Y, Weil M, Albeck M, Peled A, Don J, et al. The immunomodulator as101 induces growth arrest and apoptosis in multiple myeloma: association with the akt/survivin pathway. Biochem Pharmacol. 2006;72(11):1423–31.

    Article  CAS  PubMed  Google Scholar 

  63. Indenbaum V, Bin H, Makarovsky D, Weil M, Shulman LM, Albeck M, et al. In vitro and in vivo activity of as101 against west nile virus (wnv). Virus Res. 2012;166(1–2):68–76.

    Article  CAS  PubMed  Google Scholar 

  64. Kalechman Y, Albeck M, Oron M, Sobelman D, Gurwith M, Horwith G, et al. Protective and restorative role of as101 in combination with chemotherapy. Cancer Res. 1991;51(5):1499–503.

    CAS  PubMed  Google Scholar 

  65. Kalechman Y, Albeck M, Sotnikbarkai I, Sredni B. As101 protection of bone-marrow stromal cells function from adverse-effects of cyclophosphamide treatment in vivo or asta-z in vitro. Exp Hematol. 1992;20(6):728.

    Google Scholar 

  66. Kalechman Y, Sotnikbarkai I, Albeck M, Sredni B. The protective role of as101 in combination with cytotoxic drugs acting by various mechanisms of action. J Immunol. 1993;150(8):A131.

    Google Scholar 

  67. Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y, et al. Ammonium trichloro(dioxoethylene-o, o’)tellurate (as101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res. 2004;64(5):1843–52.

    Article  CAS  PubMed  Google Scholar 

  68. Kalechman Y, Rushkin G, Nerubay J, Albeck M, Sredni B. Effect of the immunomodulator as101 on chemotherapy-induced multilineage myelosuppression, thrombocytopenia, and anemia in mice. Exp Hematol. 1995;23(13):1358–66.

    CAS  PubMed  Google Scholar 

  69. Sredni B, Tichler T, Shani A, Catane R, Kaufman B, Strassmann G, et al. Predominance of th1 response in tumor bearing mice and cancer patients treated with as101. J Natl Cancer Inst. 1996;88(18):1276–84.

    Article  CAS  PubMed  Google Scholar 

  70. Carmely A, Meirow D, Peretz A, Albeck M, Bartoov B, Sredni B. Protective effect of the immunomodulator as101 against cyclophosphamide-induced testicular damage in mice. Hum Reprod. 2009;24(6):1322–9.

    Article  CAS  PubMed  Google Scholar 

  71. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78(11):2791–808.

    CAS  PubMed  Google Scholar 

  72. Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell CJS, et al. Granulocyte-colony and granulocyte-macrophage-colony stimulating factors induce human-endothelial cells to migrate and proliferate. Nature. 1989;337(6206):471–3.

    Article  CAS  PubMed  Google Scholar 

  73. Akdemir A, Zeybek B, Akman L, Ergenoglu AM, Yeniel AO, Erbas O, et al. Granulocyte-colony stimulating factor decreases the extent of ovarian damage caused by cisplatin in an experimental rat model. J Gynecol Oncol. 2014;25(4):328–33.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Solaroglu I, Tsubokawa T, Cahill J, Zhang JH. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 2006;143(4):965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harada M, Qin YJ, Takano H, Minamino T, Zou YZ, Toko H, et al. G-csf prevents cardiac remodeling after myocardial infarction by activating the jak-stat pathway in cardiomyocytes. Nat Med. 2005;11(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  76. Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;24(19):3187–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Appiah MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Appiah, L.A., Green, D.M. (2017). Fertility Risk with Cancer Therapy. In: Woodruff, T., Gosiengfiao, Y. (eds) Pediatric and Adolescent Oncofertility. Springer, Cham. https://doi.org/10.1007/978-3-319-32973-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32973-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32971-0

  • Online ISBN: 978-3-319-32973-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics