Skip to main content

Host Defense Peptides and the Eicosanoid Cascade

  • Chapter
  • First Online:
Host Defense Peptides and Their Potential as Therapeutic Agents

Abstract

Host defense peptides (HDPs) and eicosanoids are two important families in host defense and inflammation. Most of the naturally occurring HDPs are cationic and amphipathic short polypeptides with typical length between 15 and 40 amino acid residues. HDPs not only possess potent antimicrobial activity against a variety of pathogens, they are also widely recognized for their multifunctional roles in both the innate and adaptive immune responses. On the other hand, arachidonic acid-derived eicosanoids, including prostaglandins, thromboxanes, leukotrienes and lipoxins, are small lipid molecules with a 20-carbon backbone, which possess potent biological properties and participate in regulation of physiological and pathophysiological processes. In this article, we discuss the biosynthesis and functions of eicosanoids with emphasis on the roles of eicosanoids in host defense and regulation of HDP production. Moreover, we review how HDPs regulate eicosanoid metabolism and conclude that there are positive feedback circuits between HDP and eicosanoid signaling with implications for certain pathological conditions, such as infection and allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agard M, Asakrah S, Morici LA (2013) PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 3:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aliberti J, Serhan C, Sher A (2002) Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. J Exp Med 196(9):1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronoff DM, Canetti C, Peters-Golden M (2004) Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol 173(1):559–565

    Article  CAS  PubMed  Google Scholar 

  • Aronoff DM et al (2008) Misoprostol impairs female reproductive tract innate immunity against Clostridium sordellii. J Immunol 180(12):8222–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung G et al (2011) Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology 132(4):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babolewska E, Brzezinska-Blaszczyk E (2015) Human-derived cathelicidin LL-37 directly activates mast cells to proinflammatory mediator synthesis and migratory response. Cell Immunol 293(2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Babolewska E, Pietrzak A, Brzezinska-Blaszczyk E (2014) Cathelicidin rCRAMP stimulates rat mast cells to generate cysteinyl leukotrienes, synthesize TNF and migrate: involvement of PLC/A2, PI3 K and MAPK signaling pathways. Int Immunol 26(11):637–646

    Article  PubMed  Google Scholar 

  • Back M et al (2011) International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 63(3):539–584

    Article  PubMed  CAS  Google Scholar 

  • Bafica A et al (2005) Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J Clin Invest 115(6):1601–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailie MB et al (1996) Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J Immunol 157(12):5221–5224

    CAS  PubMed  Google Scholar 

  • Bernard JJ, Gallo RL (2010) Cyclooxygenase-2 enhances antimicrobial peptide expression and killing of Staphylococcus aureus. J Immunol 185(11):6535–6544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertin J et al (2012) Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells. J Neuroinflamm 9:55

    Article  CAS  Google Scholar 

  • Bozinovski S et al (2012) Serum amyloid A opposes lipoxin A(4) to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 109(3):935–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell EL, Serhan CN, Colgan SP (2011) Antimicrobial aspects of inflammatory resolution in the mucosa: a role for proresolving mediators. J Immunol 187(7):3475–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canavaci AM et al (2014) The acute phase of Trypanosoma cruzi infection is attenuated in 5-lipoxygenase-deficient mice. Mediators Inflamm 2014:893634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canny G et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A 99(6):3902–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cederlund A et al (2014) Label-free quantitative mass spectrometry reveals novel pathways involved in LL-37 expression. J Innate Immun 6(3):365–376

    CAS  PubMed  Google Scholar 

  • Chaves MM et al (2014) Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J Immunol 192(10):4765–4773

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2007) Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol 37(2):434–444

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2008) Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 205(12):2791–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH et al (2015) Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med 21(4):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang N et al (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484(7395):524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chotjumlong P et al (2010) Human beta-defensin-3 up-regulates cyclooxygenase-2 expression and prostaglandin E2 synthesis in human gingival fibroblasts. J Periodontal Res 45(4):464–470

    CAS  PubMed  Google Scholar 

  • Chotjumlong P et al (2013) Involvement of the P2X7 purinergic receptor and c-Jun N-terminal and extracellular signal-regulated kinases in cyclooxygenase-2 and prostaglandin E2 induction by LL-37. J Innate Immun 5(1):72–83

    Article  CAS  PubMed  Google Scholar 

  • Chouinard F et al (2013) 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 93(2):267–276

    Article  CAS  PubMed  Google Scholar 

  • Cilloniz C et al (2010) Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection. J Virol 84(15):7613–7624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claria J, Serhan CN (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A 92(21):9475–9479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby JK et al (2015) Differences in lung Cryptococcus neoformans burden after infection are associated with lipoxin signaling. Am J Respir Cell Mol Biol

    Google Scholar 

  • Cole AM, Weis P, Diamond G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272(18):12008–12013

    Article  CAS  PubMed  Google Scholar 

  • Cooray SN et al (2013) Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci U S A 110(45):18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulombe F et al (2014) Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity 40(4):554–568

    Article  CAS  PubMed  Google Scholar 

  • Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol

    Google Scholar 

  • Dennis EA et al (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111(10):6130–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA et al (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343(6255):282–284

    Article  CAS  PubMed  Google Scholar 

  • Edenius C, Haeggstrom J, Lindgren JA (1988) Transcellular conversion of endogenous arachidonic acid to lipoxins in mixed human platelet-granulocyte suspensions. Biochem Biophys Res Commun 157(2):801–807

    Article  CAS  PubMed  Google Scholar 

  • Edfeldt K et al (2006) Involvement of the antimicrobial peptide LL-37 in human atherosclerosis. Arterioscler Thromb Vasc Biol 26(7):1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Filep JG (2013) Biasing the lipoxin A4/formyl peptide receptor 2 pushes inflammatory resolution. Proc Natl Acad Sci U S A 110(45):18033–18034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore S et al (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med 180(1):253–260

    Article  CAS  PubMed  Google Scholar 

  • Flamand L et al (2004) Release of anti-HIV mediators after administration of leukotriene B4 to humans. J Infect Dis 189(11):2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Flamand L, Tremblay MJ, Borgeat P (2007) Leukotriene B4 triggers the in vitro and in vivo release of potent antimicrobial agents. J Immunol 178(12):8036–8045

    Article  CAS  PubMed  Google Scholar 

  • Fujishima H et al (1999) Cytosolic phospholipase A2 is essential for both the immediate and the delayed phases of eicosanoid generation in mouse bone marrow-derived mast cells. Proc Natl Acad Sci U S A 96(9):4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk CD (2005) Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 4(8):664–672

    Article  CAS  PubMed  Google Scholar 

  • Ganz T et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76(4):1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Gil de Munoz FL et al (2008) Prostaglandin E2 modulates the expression of antimicrobial peptides in the fat body and midgut of Anopheles albimanus. Arch Insect Biochem Physiol 68(1):14–25

    Article  CAS  PubMed  Google Scholar 

  • Gaudreault E, Gosselin J (2007) Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent. Viral Immunol 20(3):407–420

    Article  CAS  PubMed  Google Scholar 

  • Gaudreault E, Gosselin J (2008) Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J Immunol 180(9):6211–6221

    Article  CAS  PubMed  Google Scholar 

  • Gijon MA et al (2000) Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that Do and Do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J Biol Chem 275(26):20146–20156

    Article  CAS  PubMed  Google Scholar 

  • Gosselin J, Borgeat P, Flamand L (2005) Leukotriene B4 protects latently infected mice against murine cytomegalovirus reactivation following allogeneic transplantation. J Immunol 174(3):1587–1593

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsson GH et al (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238(2):325–332

    Article  CAS  PubMed  Google Scholar 

  • Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111(10):5866–5898

    Article  PubMed  CAS  Google Scholar 

  • Harizi H, Gualde N (2005) The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells. Tissue Antigens 65(6):507–514

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne AB et al (1992) Colorectal leukotriene B4 synthesis in vitro in inflammatory bowel disease: inhibition by the selective 5-lipoxygenase inhibitor BWA4C. Gut 33(4):513–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata T, Narumiya S (2012) Prostanoids as regulators of innate and adaptive immunity. Adv Immunol 116:143–174

    Article  CAS  PubMed  Google Scholar 

  • Hwang J et al (2013) An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and Imd pathways by blocking eicosanoid biosynthesis. Arch Insect Biochem Physiol 83(3):151–169

    Article  CAS  PubMed  Google Scholar 

  • Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanda N, Ishikawa T, Watanabe S (2010) Prostaglandin D2 induces the production of human beta-defensin-3 in human keratinocytes. Biochem Pharmacol 79(7):982–989

    Article  CAS  PubMed  Google Scholar 

  • Kanda N et al (2011) The antimycotic drugs itraconazole and terbinafine hydrochloride induce the production of human beta-defensin-3 in human keratinocytes. Immunobiology 216(4):497–504

    Article  CAS  PubMed  Google Scholar 

  • Kase K et al (2009) Inhibitory action of roxithromycin on histamine release and prostaglandin D2 production from beta-defensin 2-stimulated mast cells. Int J Mol Med 23(3):337–340

    CAS  PubMed  Google Scholar 

  • Kaul V et al (2012) An important role of prostanoid receptor EP2 in host resistance to Mycobacterium tuberculosis infection in mice. J Infect Dis 206(12):1816–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ (1990) Elevated formation of lipoxins in viral antibody-positive rat alveolar macrophages. Am J Respir Cell Mol Biol 3(2):113–118

    Article  CAS  PubMed  Google Scholar 

  • Le Bel M, Brunet A, Gosselin J (2014) Leukotriene B4, an endogenous stimulator of the innate immune response against pathogens. J Innate Immun 6(2):159–168

    Article  PubMed  CAS  Google Scholar 

  • Lee SP et al (2009) Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. J Immunol 182(1):530–537

    Article  CAS  PubMed  Google Scholar 

  • Leslie CC (2015) Cytosolic phospholipase A2: physiological function and role in disease. J Lipid Res

    Google Scholar 

  • Machado ER et al (2005) Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. J Immunol 175(6):3892–3899

    Article  CAS  PubMed  Google Scholar 

  • Mancuso P et al (1998) 5-Lipoxygenase reaction products modulate alveolar macrophage phagocytosis of Klebsiella pneumoniae. Infect Immun 66(11):5140–5146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso P et al (2010) Intrapulmonary administration of leukotriene B4 enhances pulmonary host defense against pneumococcal pneumonia. Infect Immun 78(5):2264–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour SC, Pena OM, Hancock RE (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35(9):443–450

    Article  CAS  PubMed  Google Scholar 

  • Mason KL et al (2013) Intrauterine group A streptococcal infections are exacerbated by prostaglandin E2. J Immunol 191(5):2457–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matera G et al (1993) Effects of two magainin peptides on eicosanoid release from rat peritoneal macrophages. Antimicrob Agents Chemother 37(3):393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka T et al (2000) Prostaglandin D2 as a mediator of allergic asthma. Science 287(5460):2013–2017

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Barber KD et al (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511(7507):99–103

    Google Scholar 

  • Medeiros AI et al (2008) Leukotrienes are potent adjuvant during fungal infection: effects on memory T cells. J Immunol 181(12):8544–8551

    Article  CAS  PubMed  Google Scholar 

  • Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci U S A 91(26):12418–12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Berrios A et al (2013) Protective role of acetylsalicylic acid in experimental Trypanosoma cruzi infection: evidence of a 15-epi-lipoxin A(4)-mediated effect. PLoS Negl Trop Dis 7(4):e2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morato CI et al (2014) Essential role of leukotriene B4 on Leishmania (Viannia) braziliensis killing by human macrophages. Microbes Infect 16(11):945–953

    Article  CAS  PubMed  Google Scholar 

  • Morato-Marques M et al (2011) Leukotrienes target F-actin/cofilin-1 to enhance alveolar macrophage anti-fungal activity. J Biol Chem 286(33):28902–28913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishima I et al (1997) Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett 419(1):83–86

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F et al (2001) Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31(4):1066–1075

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F et al (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T et al (2003) Syntheses of prostaglandin E2 and E-cadherin and gene expression of beta-defensin-2 by human gingival epithelial cells in response to Actinobacillus actinomycetemcomitans. Inflammation 27(6):341–349

    Article  CAS  PubMed  Google Scholar 

  • Patrzykat A et al (2003) Novel antimicrobial peptides derived from flatfish genes. Antimicrob Agents Chemother 47(8):2464–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peres CM et al (2007) Inhibition of leukotriene biosynthesis abrogates the host control of Mycobacterium tuberculosis. Microbes Infect 9(4):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peres-Buzalaf C et al (2011) Control of experimental pulmonary tuberculosis depends more on immunostimulatory leukotrienes than on the absence of immunosuppressive prostaglandins. Prostaglandins Leukot Essent Fatty Acids 85(2):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9(1):62–70

    Article  CAS  PubMed  Google Scholar 

  • Peter Chiou P et al (2006) Effects of linear cationic alpha-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Dev Comp Immunol 30(9):797–806

    Article  CAS  PubMed  Google Scholar 

  • Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357(18):1841–1854

    Article  CAS  PubMed  Google Scholar 

  • Peters-Golden M et al (2005) Leukotrienes: underappreciated mediators of innate immune responses. J Immunol 174(2):589–594

    Article  CAS  PubMed  Google Scholar 

  • Pundir P et al (2014) Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol 7(1):177–187

    Article  CAS  PubMed  Google Scholar 

  • Qiu H et al (2006) Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci U S A 103(21):8161–8166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldi SF et al (2015) 15-epi-lipoxin A4 reduces the mortality of prematurely born pups in a mouse model of infection-induced preterm birth. Mol Hum Reprod 21(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano M, Serhan CN (1992) Lipoxin generation by permeabilized human platelets. Biochemistry 31(35):8269–8277

    Article  CAS  PubMed  Google Scholar 

  • Salvado MD et al (2013) Cathelicidin LL-37 induces angiogenesis via PGE2-EP3 signaling in endothelial cells, in vivo inhibition by aspirin. Arterioscler Thromb Vasc Biol 33(8):1965–1972

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson B, Funk CD (1989) Enzymes involved in the biosynthesis of leukotriene B4. J Biol Chem 264(33):19469–19472

    CAS  PubMed  Google Scholar 

  • Samuelsson B et al (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Satpathy SR et al (2015) Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat Commun 6:7064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauber J et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621

    Article  CAS  PubMed  Google Scholar 

  • Secatto A et al (2012) 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection. PLoS ONE 7(3):e31701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secatto A et al (2014) The leukotriene B(4)/BLT(1) axis is a key determinant in susceptibility and resistance to histoplasmosis. PLoS ONE 9(1):e85083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serezani CH et al (2005) Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood 106(3):1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serezani CH et al (2006) Leukotrienes are essential for the control of Leishmania amazonensis infection and contribute to strain variation in susceptibility. J Immunol 177(5):3201–3208

    Article  CAS  PubMed  Google Scholar 

  • Serezani CH et al (2007) Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase. Am J Respir Cell Mol Biol 37(5):562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serezani CH et al (2012) PTEN directly activates the actin depolymerization factor cofilin-1 during PGE2-mediated inhibition of phagocytosis of fungi. Sci Signal 5(210):ra12

    Google Scholar 

  • Serhan CN (1997) Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins 53(2):107–137

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73(3–4):141–162

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serhan CN, Hamberg M, Samuelsson B (1984a) Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun 118(3):943–949

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Hamberg M, Samuelsson B (1984b) Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci U S A 81(17):5335–5339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serhan CN et al (2003) Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol 171(12):6856–6865

    Article  CAS  PubMed  Google Scholar 

  • Shirey KA et al (2014) Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol 7(3):549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha S, Kim Y (2009) Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biosci Biotechnol Biochem 73(9):2077–2084

    Article  CAS  PubMed  Google Scholar 

  • Shryock N et al (2013) Lipoxin A(4) and 15-epi-lipoxin A(4) protect against experimental cerebral malaria by inhibiting IL-12/IFN-gamma in the brain. PLoS ONE 8(4):e61882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK et al (1998) Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci U S A 95(25):14961–14966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WL, Urade Y, Jakobsson PJ (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 111(10):5821–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares EM et al (2013) Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes. J Immunol 190(4):1614–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen O et al (1997) The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90(7):2796–2803

    CAS  PubMed  Google Scholar 

  • Sorensen OE et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97(12):3951–3959

    Article  CAS  PubMed  Google Scholar 

  • Spencer LT et al (2004) Role of human neutrophil peptides in lung inflammation associated with alpha1-antitrypsin deficiency. Am J Physiol Lung Cell Mol Physiol 286(3):L514–L520

    Article  CAS  PubMed  Google Scholar 

  • Stanley-Samuelson DW et al (1991) Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci U S A 88(3):1064–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley-Samuelson D et al (1997) Eicosanoids mediate microaggregation and nodulation responses to bacterial infections in black cutworms, Agrotis ipsilon, and true armyworms, Pseudaletia unipuncta. J Insect Physiol 43(2):125–133

    Article  PubMed  Google Scholar 

  • Sun SC, Faye I (1995) Transcription of immune genes in the giant silkmoth, Hyalophora cecropia, is augmented by H2O2 and diminished by thiol reagents. Eur J Biochem 231(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Sun J et al (2013) The antimicrobial peptide LL-37 induces synthesis and release of cysteinyl leukotrienes from human eosinophils–implications for asthma. Allergy 68(3):304–311

    Article  CAS  PubMed  Google Scholar 

  • Suram S et al (2006) Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem 281(9):5506–5514

    Article  CAS  PubMed  Google Scholar 

  • Suram S et al (2010) Pathways regulating cytosolic phospholipase A2 activation and eicosanoid production in macrophages by Candida albicans. J Biol Chem 285(40):30676–30685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suram S et al (2013) Cytosolic phospholipase A(2)alpha and eicosanoids regulate expression of genes in macrophages involved in host defense and inflammation. PLoS ONE 8(7):e69002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talvani A et al (2002) Leukotriene B(4) induces nitric oxide synthesis in Trypanosoma cruzi-infected murine macrophages and mediates resistance to infection. Infect Immun 70(8):4247–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X et al (2015) P2X7 Receptor regulates internalization of antimicrobial peptide LL-37 by human macrophages that promotes intracellular pathogen clearance. J Immunol

    Google Scholar 

  • Thivierge M et al (1998) Prostaglandin E2 induces resistance to human immunodeficiency virus-1 infection in monocyte-derived macrophages: downregulation of CCR5 expression by cyclic adenosine monophosphate. Blood 92(1):40–45

    CAS  PubMed  Google Scholar 

  • Tobin DM et al (2010) The lta4 h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140(5):717–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin DM et al (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148(3):434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda T et al (2014) Combination therapy of 15-epi-lipoxin A4 with antibiotics protects mice from Escherichia coli-induced sepsis*. Crit Care Med 42(4):e288–e295

    Article  CAS  PubMed  Google Scholar 

  • Valdez PA et al (2012) Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells. Immunity 36(4):668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valore EV et al (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101(8):1633–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Haussen J et al (2008) The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 59(1):12–23

    Article  Google Scholar 

  • Wan M et al (2007) Leukotriene B4 triggers release of the cathelicidin LL-37 from human neutrophils: novel lipid-peptide interactions in innate immune responses. FASEB J 21(11):2897–2905

    Article  CAS  PubMed  Google Scholar 

  • Wan M et al (2011) Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J 25(5):1697–1705

    Article  CAS  PubMed  Google Scholar 

  • Wan M et al (2014a) Cathelicidin LL-37 induces time-resolved release of LTB4 and TXA2 by human macrophages and triggers eicosanoid generation in vivo. FASEB J 28(8):3456–3467

    Article  CAS  PubMed  Google Scholar 

  • Wan M et al (2014b) Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol 95(6):971–981

    Article  PubMed  CAS  Google Scholar 

  • Woodward DF, Jones RL, Narumiya S (2011) International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63(3):471–538

    Article  CAS  PubMed  Google Scholar 

  • Yajima M et al (2003) A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem J 371(Pt 1):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D et al (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by the Swedish Research Council (10350, Linneus Grant CERIC), the Cardiovascular Program, Thematic Center for Inflammation and Stiftelsen Clas Groschinskys Minnesfond. JZH is supported by a Distinguished Professor Award from Karolinska Institutet and XT by a Ph.D. stipend from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wan or Jesper Z. Haeggström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wan, M., Tang, X., Haeggström, J.Z. (2016). Host Defense Peptides and the Eicosanoid Cascade. In: Epand, R. (eds) Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Cham. https://doi.org/10.1007/978-3-319-32949-9_6

Download citation

Publish with us

Policies and ethics