Skip to main content

How to Teach Old Antibiotics New Tricks

  • Chapter
  • First Online:

Abstract

Antimicrobial peptides (AMPs), or more generally host defense peptides, have broad-spectrum antimicrobial activity and use nonspecific interactions to target generic features common to the membranes of many pathogens. As a result, development of resistance to such natural defenses is inhibited compared to conventional antibiotics. The disadvantage of AMPs, however, is that they are often not very potent. In contrast, traditional antibiotics typically have strong potency, but due to a broad range of bacterial defense mechanisms, there are many examples of resistance. Here, we explore the possibility of combining these two classes of molecules. In the first half of this chapter, we review the fundamentals of membrane curvature generation and the various strategies recently used to mimic this membrane activity of AMPs using different classes of synthetic molecules. In the second half, we show that it is possible to impart membrane activity to molecules with no previous membrane activity, and summarize some of our recent works which aim to combine advantages of traditional antibiotics and AMPs into a single molecule with multiple mechanisms of killing as well as multiple mechanisms of specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME (2014) Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 27(3):419–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agerberth B, Lee J-Y, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H (1991) Amino acid sequence of pr-39. Eur J Biochem 202(3):849–854

    Article  CAS  PubMed  Google Scholar 

  • Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altay E, Yapaöz MA, Keskin B, Yucesan G, Eren T (2015) Influence of alkyl chain length on the surface activity of antibacterial polymers derived from romp. Colloids Surf B 127:73–78

    Article  CAS  Google Scholar 

  • Anguita-Alonso P, Hanssen A, Osmon D, Trampuz A, Steckelberg J, Patel R (2005) High rate of aminoglycoside resistance among staphylococci causing prosthetic joint infection. Clin Orthop Relat Res 439:43–47

    Article  PubMed  Google Scholar 

  • Asensio JL, Hidalgo A, Bastida A, Torrado M, Corzana F, Chiara JL, Garcia-Junceda E, Canada J, Jimenez-Barbero J (2005) A simple structural-based approach to prevent aminoglycoside inactivation by bacterial defense proteins. Conformational restriction provides effective protection against neomycin-b nucleotidylation by ant4. J Am Chem Soc 127(23):8278–8279

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Baumgart T, Capraro BR, Zhu C, Das SL (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62(1):483–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B (2009) Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr Opin Colloid Interface Sci 14(5):349–355

    Article  CAS  Google Scholar 

  • Bechinger B, Kim Y, Chirlian LE, Gesell J, Neumann JM, Montal M, Tomich J, Zasloff M, Opella SJ (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state nmr spectroscopy. J Biomol NMR 1(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Bigger J (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244(6320):497–500

    Article  Google Scholar 

  • Bowdish DME, Davidson DJ, Hancock REW (2005) A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005a) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 3(3):238–250

    Article  CAS  Google Scholar 

  • Brogden KA (2005b) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  • Brouwer CPJM, Rahman M, Welling MM (2011) Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides 32(9):1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Bryan L, Kowand S, Van Den Elzen H (1979) Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: clostridium perfringens and bacteroides fragilis. Antimicrob Agents Chemother 15(1):7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhathoki-Uprety J, Peng L, Melander C, Novak BM (2012) Synthesis of guanidinium functionalized polycarbodiimides and their antibacterial activities. ACS Macro Lett 1(3):370–374

    Article  CAS  Google Scholar 

  • Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Ribeiro A, de Melo Carrasco L (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15(10):18040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Liu R, Hayouka Z, Chen X, Ehrhardt J, Lu Q, Burke E, Yang Y, Weisblum B, Wong GCL, Masters KS, Gellman SH (2014) Ternary nylon-3 copolymers as host-defense peptide mimics: beyond hydrophobic and cationic subunits. J Am Chem Soc 136(41):14530–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1184–1202

    Article  CAS  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280(13):12316–12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 105(8):2794–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claudon P, Violette A, Lamour K, Decossas M, Fournel S, Heurtault B, Godet J, Mely Y, Jamart-Gregoire B, Averlant-Petit MC, Briand JP, Duportail G, Monteil H, Guichard G (2010) Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: helical mimics of host-defense peptides based on a heterogeneous amide/urea backbone. Angew Chem Int Ed 49(2):333–336

    Article  CAS  Google Scholar 

  • Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13(6):632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated clpp kills persisters and eradicates a chronic biofilm infection. Nature 503(7476):365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51(3):341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BD, Chen L, Tai PC (1986) Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci 83(16):6164–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    CAS  PubMed  Google Scholar 

  • Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8(2):84–87

    Article  CAS  PubMed  Google Scholar 

  • Derzelle S, Turlin E, Duchaud E, Pages S, Kunst F, Givaudan A, Danchin A (2004) The phop-phoq two-component regulatory system of photorhabdus luminescens is essential for virulence in insects. J Bacteriol 186(5):1270–1279

    Google Scholar 

  • Deserno M (2009) Membrane elasticity and mediated interactions in continuum theory: a differential geometric approach. In: Faller R, Longo ML, Risbud SH, Jue T (eds) Biomembrane frontiers. Handbook of modern biophysics. Humana Press, pp 41–74

    Google Scholar 

  • Dohm MT, Mowery BP, Czyzewski AM, Stahl SS, Gellman SH, Barron AE (2010) Biophysical mimicry of lung surfactant protein b by random nylon-3 copolymers. J Am Chem Soc 132(23):7957–7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döring G, Flume P, Heijerman H, Elborn JS, Group CS (2012) Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros 11(6):461–479

    Article  CAS  Google Scholar 

  • Dorner F, Lienkamp K (2014) Polymer-based synthetic mimics of antimicrobial peptides (smamps)—a new class of nature-inspired antimicrobial agents with low bacterial resistance formation potential. In: Munoz-Bonilla A, Cerrada ML, Fernandez-Garcia M (eds) Polymeric materials with antimicrobial activity: from synthesis to applications, vol 10. R Soc Chem, pp 97–138

    Google Scholar 

  • Dréno B, Bettoli V, Ochsendorf F, Layton A, Mobacken H, Degreef H (2004) European recommendations on the use of oral antibiotics for acne. Eur J Dermatol 14(6):391–399

    PubMed  Google Scholar 

  • Drin G, Antonny B (2010) Amphipathic helices and membrane curvature. FEBS Lett 584(9):1840–1847

    Article  CAS  PubMed  Google Scholar 

  • Dürr UHN, Sudheendra US, Ramamoorthy A (2006) Ll-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1408–1425

    Article  CAS  Google Scholar 

  • Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10(01):1–34

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC, Wilcox W (1982) Hydrophobic moments and protein structure. Faraday Symp Chem Soc 17:109–120

    Article  Google Scholar 

  • Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang Y-Y (2012) Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 7(3):201–222

    Article  CAS  Google Scholar 

  • Engler AC, Tan JPK, Ong ZY, Coady DJ, Ng VWL, Yang YY, Hedrick JL (2013) Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14(12):4331–4339

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 17(5):298–305

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J Mol Biol 379(1):38–50

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40(9):1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Farsad K, Camilli PD (2003) Mechanisms of membrane deformation. Curr Opin Cell Biol 15(4):372–381

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discovery 11(1):37–51

    CAS  Google Scholar 

  • Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the ä site of escherichia coli 16 s ribosomal rna complexée! With an aminoglycoside antibiotic. Science 274:1367–1371

    Article  CAS  PubMed  Google Scholar 

  • Fowler SA, Blackwell HE (2009) Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 7(8):1508–1524

    Article  CAS  PubMed  Google Scholar 

  • Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nüsslein K, Tew GN (2008) Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9(11):2980–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R (2015) Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem Rev (Washington, DC, US)

    Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    Article  CAS  PubMed  Google Scholar 

  • Gazit E, Lee W-J, Brey PT, Shai Y (1994) Mode of action of the antibacterial cecropin b2: a spectrofluorometric study. Biochemistry 33(35):10681–10692

    Article  CAS  PubMed  Google Scholar 

  • Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33(4):704–717

    Article  CAS  PubMed  Google Scholar 

  • Gelbart WM, Ben-Shaul A, Roux D (eds) (1994) Micelles, membranes, microemulsions, and monolayers. Partially ordered systems. Springer

    Google Scholar 

  • Gidalevitz D, Ishitsuka Y, Muresan AS, Konovalov O, Waring AJ, Lehrer RI, Lee KYC (2003) Interaction of antimicrobial peptide protegrin with biomembranes. Proc Natl Acad Sci 100(11):6302–6307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliani A, Rinaldi A (2011a) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68(13):2255–2266

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Rinaldi AC (2011b) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68(13):2255–2266

    Article  CAS  PubMed  Google Scholar 

  • Gizdavic-Nikolaidis MR, Bennett JR, Swift S, Easteal AJ, Ambrose M (2011) Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater 7(12):4204–4209

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, Hackett M, Miller SI (1997) Regulation of lipid a modifications by salmonella typhimurium virulence genes phop-phoq. Science 276(5310):250–253178

    Google Scholar 

  • Hancock R, Bell A (1988) Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis 7(6):713–720

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech 24(12):1551–1557

    Article  CAS  Google Scholar 

  • Hanessian S, Masse R, Capmeau M-L (1977) Aminoglycoside antibiotics: synthesis of 5”-amino-5”-deoxyneomycin and 5”-amino-5”-deoxyparomomycin. J Antibiot 30(10):893–896

    Article  CAS  PubMed  Google Scholar 

  • Hansen T, Alst T, Havelkova M, Strom MB (2010) Antimicrobial activity of small beta-peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides. J Med Chem 53(2):595–606

    Article  CAS  PubMed  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11):693–703

    CAS  Google Scholar 

  • Henderson MJ, Lee KYC (2013) Promising antimicrobial agents designed from natural peptide templates. Curr Opin Solid State Mater Sci 17(4):175–192

    Article  CAS  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433(7024):377–381

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Oren Z, Shai Y (1999) Structure and organization of hemolytic and nonhemolytic diastereomers of antimicrobial peptides in membranes. Biochemistry 38(51):16963–16973

    Article  CAS  PubMed  Google Scholar 

  • Hsu C-H, Chen C, Jou M-L, Lee AY-L, Lin Y-C, Yu Y-P, Huang W-T, Wu S-H (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33(13):4053–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YG, Li XL, Sebti SM, Chen JD, Cai JF (2011) Design and synthesis of aapeptides: a new class of peptide mimics. Bioorg Med Chem Lett 21(5):1469–1471

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Schmidt NW, Zhu R, Jiang Y, Lai GH, Wei G, Palermo EF, Kuroda K, Wong GCL, Yang L (2013) A critical evaluation of random copolymer mimesis of homogeneous antimicrobial peptides. Macromolecules 46(5):1908–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352

    Article  CAS  PubMed  Google Scholar 

  • Huang ML, Shin SBY, Benson MA, Torres VJ, Kirshenbaum K (2012) A comparison of linear and cyclic peptoid oligomers as potent antimicrobial agents. ChemMedChem 7(1):114–122

    Article  CAS  PubMed  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9(1):62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilker MF, Nüsslein K, Tew GN, Coughlin EB (2004) Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc 126(48):15870–15875

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka Y, Arnt L, Majewski J, Frey SL, Ratajczak M, Kjaer K, Tew GN (2006) Lee KYC (2008) Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion (vol 128, p 13123). J Am Chem Soc 130(7):2372

    Article  CAS  Google Scholar 

  • Israelachvili JN, Marčelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13(02):121–200

    Article  CAS  PubMed  Google Scholar 

  • James WH, Buchanan EG, Muller CW, Dean JC, Kosenkov D, Slipchenko LV, Guo L, Reidenbach AG, Gellman SH, Zwier TS (2011) Evolution of amide stacking in larger gamma-peptides: triamide h-bonded cycles. J Phys Chem A 115(47):13783–13798

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalfa VC, Jia HP, Kunkle RA, McCray PB, Tack BF, Brogden KA (2001) Congeners of smap29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob Agents Chemother 45(11):3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokryakov VN, Harwig SSL, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327(2):231–236

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Caputo GA (2013) Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(1):49–66

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, DeGrado WF (2005) Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 127(12):4128–4129

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Caputo GA, DeGrado WF (2009) The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem Eur J 15(5):1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Kwon YU, Kodadek T (2007) Quantitative evaluation of the relative cell permeability of peptoids and peptides. J Am Chem Soc 129(6):1508-+

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  • Lam KLH, Ishitsuka Y, Cheng Y, Chien K, Waring AJ, Lehrer RI, Lee KYC (2006) Mechanism of supported membrane disruption by antimicrobial peptide protegrin-1. J Phys Chem B 110(42):21282–21286

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, Cao W, Wang Y-H, Su B, Nestle FO, Zal T, Mellman I, Schroder J-M, Liu Y-J, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu Y-J, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci Trans Med 3(73):73ra19–73ra19

    Google Scholar 

  • Lee MW, Chakraborty S, Schmidt NW, Murgai R, Gellman SH, Wong GCL (2014) Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838(9):2269–2279

    Article  CAS  Google Scholar 

  • Lehrer RI (2004) Primate defensins. Nat Rev Micro 2(9):727–738

    Article  CAS  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007a) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci 104(22):9469–9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007b) The antimicrobial peptide-sensing system aps of staphylococcus aureus. Mol Microbiol 66(5):1136–1147

    Article  CAS  PubMed  Google Scholar 

  • Li P, Li X, Saravanan R, Li CM, Leong SSJ (2012) Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2(10):4031–4044

    Article  CAS  Google Scholar 

  • Li YQ, Smith C, Wu HF, Teng P, Shi Y, Padhee S, Jones T, Nguyen AM, Cao CH, Yin H, Cai JF (2014) Short antimicrobial lipo-alpha/gamma-aa hybrid peptides. ChemBioChem 15(15):2275–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DH, DeGrado WF (2001) De novo design, synthesis, and characterization of antimicrobial beta-peptides. J Am Chem Soc 123(31):7553–7559

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Masters KS, Gellman SH (2012a) Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces. Biomacromolecules 13(4):1100–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Vang KZ, Kreeger PK, Gellman SH, Masters KS (2012b) Experimental and computational analysis of cellular interactions with nylon-3-bearing substrates. J Biomed Mater Res Part A 100A(10):2750–2759

    Article  CAS  Google Scholar 

  • Liu R, Chen X, Chakraborty S, Lemke JJ, Hayouka Z, Chow C, Welch RA, Weisblum B, Masters KS, Gellman SH (2014) Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J Am Chem Soc 136(11):4410–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Chen X, Falk SP, Masters KS, Weisblum B, Gellman SH (2015) Nylon-3 polymers active against drug-resistant candida albicans biofilms. J Am Chem Soc 137(6):2183–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljunggren S, Eriksson JC (1992) Minimal surfaces and winsor iii microemulsions. Langmuir 8(5):1300–1306

    Article  CAS  Google Scholar 

  • Locock KES, Michl TD, Valentin JDP, Vasilev K, Hayball JD, Qu Y, Traven A, Griesser HJ, Meagher L, Haeussler M (2013) Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules 14(11):4021–4031

    Article  CAS  PubMed  Google Scholar 

  • Locock KES, Michl TD, Stevens N, Hayball JD, Vasilev K, Postma A, Griesser HJ, Meagher L, Haeussler M (2014) Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides. ACS Macro Letters 3(4):319–323

    Article  CAS  Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35(43):13723–13728

    Article  CAS  PubMed  Google Scholar 

  • Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev (Washington, DC, US) 105(2):477–498

    Google Scholar 

  • Malanovic N, Leber R, Schmuck M, Kriechbaum M, Cordfunke RA, Drijfhout JW, de Breij A, Nibbering PH, Kolb D, Lohner K (2015) Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide op-145 on gram-positive bacterial and mammalian membrane model systems. Biochimica et Biophysica Acta (BBA)-Biomembranes 1848(10, Part A):2437–2447

    Google Scholar 

  • Masip I, Perez-Paya E, Messeguer A (2005) Peptoids as source of compounds eliciting antibacterial activity. Comb Chem High Throughput Screening 8(3):235–239

    Article  CAS  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1462(1–2):1–10

    Article  CAS  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochimica Et Biophysica Acta-Biomembranes 1788(8):1687–1692

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33(11):3342–3349

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35(35):11361–11368

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes 1327(1):119–130

    Article  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K-I, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37(34):11856–11863

    Article  CAS  PubMed  Google Scholar 

  • McInturff JE, Wang S-J, Machleidt T, Lin TR, Oren A, Hertz CJ, Krutzik SR, Hart S, Zeh K, Anderson DH, Gallo RL, Modlin RL, Kim J (2005) Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against propionibacterium acnes. J Invest Dermatol 125(2):256–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Samperio P (2014) Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect Drug Resist 7:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensa B, Kim YH, Choi S, Scott R, Caputo GA, DeGrado WF (2011) Antibacterial mechanism of action of arylamide foldamers. Antimicrob Agents Chemother 55(11):5043–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: Activity and resistance. Antimicrob Agents Chemother 43(4):727–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Gordon VD, Yang L, Coridan R, Wong GCL (2008a) Hiv tat forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. Angew Chem Int Ed 47(16):2986–2989

    Article  CAS  Google Scholar 

  • Mishra A, Gordon VD, Yang L, Coridan R, Wong GC (2008b) Hiv tat forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. Angew Chem Int Ed 47(16):2986–2989

    Article  CAS  Google Scholar 

  • Mishra A, Tai KP, Schmidt NW, Ouellette AJ, Wong GCL (2011a) Chapter four—small-angle X-ray scattering studies of peptide–lipid interactions using the mouse paneth cell α-defensin cryptdin-4. In: Michael L, Johnson JMH, Gary KA (eds) Methods in enzymology, vol 492. Academic Press, pp 127–149

    Google Scholar 

  • Mishra A, Lai GH, Schmidt NW, Sun VZ, Rodriguez AR, Tong R, Tang L, Cheng J, Deming TJ, Kamei DT, Wong GCL (2011b) Translocation of hiv tat peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci 108(41):16883–16888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Lai GH, Schmidt NW, Sun VZ, Rodriguez AR, Tong R, Tang L, Cheng J, Deming TJ, Kamei DT (2011c) Translocation of hiv tat peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci 108(41):16883–16888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojsoska B, Jensses H (2015) Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals 8:366–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129(50):15474–15476

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192(23):6191–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339

    Article  CAS  Google Scholar 

  • Nandel FS, Saini A (2007) Conformational study of short peptoid models for future applications as potent antimicrobial compounds. Macromol Theory Simul 16(3):295–303

    Article  CAS  Google Scholar 

  • Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang Y-Y (2011) Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem 3(5):409–414

    Article  CAS  PubMed  Google Scholar 

  • Ng VWL, Tan JPK, Leong J, Voo ZX, Hedrick JL, Yang YY (2014) Antimicrobial polycarbonates: investigating the impact of nitrogen-containing heterocycles as quaternizing agents. Macromolecules 47(4):1285–1291

    Article  CAS  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson AC, Janson H, Wold H, Fugelli A, Andersson K, Håkangård C, Olsson P, Olsen WM (2015) Ltx-109 is a novel agent for nasal decolonization of methicillin-resistant and-sensitive staphylococcus aureus. Antimicrob Agents Chemother 59(1):145–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu YH, Hu YG, Li XL, Chen JD, Cai JF (2011) Gamma-aapeptides: design, synthesis and evaluation. New J Chem 35(3):542–545

    Article  CAS  Google Scholar 

  • Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K (2011) Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules 12(10):3581–3591

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure—function study. Biochemistry 36(7):1826–1835

    Article  CAS  PubMed  Google Scholar 

  • Pagès J-M, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective diffusion barrier in gram-negative bacteria. Nat Rev Microbiol 6(12):893–903

    Article  PubMed  CAS  Google Scholar 

  • Palermo EF, Kuroda K (2009) Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10(6):1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Palermo E, Kuroda K (2010) Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol 87(5):1605–1615

    Article  CAS  PubMed  Google Scholar 

  • Palermo EF, Sovadinova I, Kuroda K (2009) Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules 10(11):3098–3107

    Article  CAS  PubMed  Google Scholar 

  • Palermo EF, Lee D-K, Ramamoorthy A, Kuroda K (2011) Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J Phys Chem B 115(2):366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palermo EF, Vemparala S, Kuroda K (2013) Antimicrobial polymers: Molecular design as synthetic mimics of host-defense peptides. In: Scholz C, Kressler J (eds) Tailored polymer architectures for pharmaceutical and biomedical applications, vol 1135. Acs symposium series, vol 1135. Am Chem Soc, pp 319–330

    Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin ii: buforin ii kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257

    Article  CAS  PubMed  Google Scholar 

  • Patch JA, Barron AE (2003) Helical peptoid mimics of magainin-2 amide. J Am Chem Soc 125(40):12092–12093

    Article  CAS  PubMed  Google Scholar 

  • Peek F, Nell MJ, Brand R, Jansen-Werkhoven T, Van Hoogdalem E, Frijns J (2009) Double-blind placebo-controlled study of the novel peptide drug p60.4ac in cronic middle ear infection. ICAAC:L1–L337

    Google Scholar 

  • Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc R Soc Lond B Biol Sci 273(1583):251–256

    Article  CAS  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor mprf is based on modification of membrane lipids with l-lysine. J Exp Med 193(9):1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter EA, Wang XF, Lee HS, Weisblum B, Gellman SH (2000) Antibiotics-non-haemolytic beta-amino-acid oligomers. Nature 404(6778):565

    Article  CAS  PubMed  Google Scholar 

  • Porter EA, Weisblum B, Gellman SH (2005) Use of parallel synthesis to probe structure-activity relationships among 12-helical beta-peptides: evidence of a limit on antimicrobial activity. J Am Chem Soc 127(32):11516–11529

    Article  CAS  PubMed  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31(49):12416–12423

    Article  CAS  PubMed  Google Scholar 

  • Punia A, Mancuso A, Banerjee P, Yang N-L (2015) Nonhemolytic and antibacterial acrylic copolymers with hexamethyleneamine and poly(ethylene glycol) side chains. ACS Macro Lett 4(4):426–430

    Article  CAS  Google Scholar 

  • Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2007) Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25(6):657–659

    Article  CAS  PubMed  Google Scholar 

  • Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ (2004) Variation in lipid a structure in the pathogenic yersiniae. Mol Microbiol 52(5):1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Ross J, Snelling A, Carnegie E, Coates P, Cunliffe W, Bettoli V, Tosti G, Katsambas A, Pulgar Galvan Perez Del, Rollman O (2003) Antibiotic-resistant acne: lessons from europe. Brit J Dermatol 148(3):467–478

    Article  CAS  Google Scholar 

  • Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochimica et Biophysica Acta (BBA)-Biomembranes 1788(8):1582–1592

    Article  CAS  Google Scholar 

  • Saiman L, Tabibi S, Starner TD, San Gabriel P, Winokur PL, Jia HP, McCray PB, Tack BF (2001) Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 45(10):2838–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambhy V, Peterson BR, Sen A (2008) Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed 47(7):1250–1254

    Article  CAS  Google Scholar 

  • Sarig H, Rotem S, Ziserman L, Danino D, Mor A (2008) Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob Agents Chemother 52(12):4308–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Feix JB (2006) Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1245–1256

    Article  CAS  Google Scholar 

  • Schauber J, Gallo RL (2008) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 122(2):261–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW, Wong GCL (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 17(4):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt N, Mishra A, Lai GH, Wong GCL (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584(9):1806–1813

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Tran D, Garcia A, Tai KP, McCray PB, Ouellette AJ, Selsted ME, Wong GCL (2011) Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J Am Chem Soc 133(17):6720–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW, Tai KP, Kamdar K, Mishra A, Lai GH, Zhao K, Ouellette AJ, Wong GCL (2012a) Arginine in α-defensins: differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior. J Biol Chem 287(26):21866–21872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW, Lis M, Zhao K, Lai GH, Alexandrova AN, Tew GN, Wong GCL (2012b) Molecular basis for nanoscopic membrane curvature generation from quantum mechanical models and synthetic transporter sequences. J Am Chem Soc 134(46):19207–19216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW, Deshayes S, Hawker S, Blacker A, Kasko AM, Wong GC (2014) Engineering persister-specific antibiotics with synergistic antimicrobial functions. ACS Nano 8(9):8786–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW, Jin F, Lande R, Curk T, Xian W, Lee C, Frasca L, Frenkel D, Dobnikar J, Gilliet M, Wong GCL (2015a) Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls tlr9 activation. Nat Mater 14(7):696–700

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NW, Agak GW, Deshayes S, Yu Y, Blacker A, Champer J, Xian W, Kasko AM, Kim J, Wong GC (2015b) Pentobra: a potent antibiotic with multiple layers of selective antimicrobial mechanisms against propionibacterium acnes. J Invest Dermatol 135(6):1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MA, Weisblum B, Gellman SH (2004) Unexpected relationships between structure and function in alpha, beta-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 126(22):6848–6849

    Article  CAS  PubMed  Google Scholar 

  • Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19(6):620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon JM, Templer RH (1993) Cubic phases of self-assembled amphiphilic aggregates. Philos Trans R Soc Lond A Math Phys Eng Sci 344(1672):377–401

    Article  CAS  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6(6):551–557

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267(7):4292–4295

    CAS  PubMed  Google Scholar 

  • Sens P, Johannes L, Bassereau P (2008) Biophysical approaches to protein-induced membrane deformations in trafficking. Curr Opin Cell Biol 20(4):476–482

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1462(1–2):55–70

    Article  CAS  Google Scholar 

  • Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10):1629–1641

    Article  CAS  PubMed  Google Scholar 

  • Shearman GC, Ces O, Templer RH, Seddon JM (2006) Inverse lyotropic phases of lipids and membrane curvature. J Phys Condens Matter 18(28):S1105

    Article  CAS  PubMed  Google Scholar 

  • Siegel DP, Kozlov MM (2004) The gaussian curvature elastic modulus of n-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J 87(1):366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Som A, Vemparala S, Ivanov I, Tew GN (2008a) Synthetic mimics of antimicrobial peptides. Pept Sci 90(2):83–93

    Article  CAS  Google Scholar 

  • Som A, Vemparala S, Ivanov I, Tew GN (2008b) Synthetic mimics of antimicrobial peptides. Biopolymers 90(2):83–93

    Article  CAS  PubMed  Google Scholar 

  • Song A, Walker SG, Parker KA, Sampson NS (2011) Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol 6(6):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sovadinova I, Palermo EF, Huang R, Thoma LM, Kuroda K (2011a) Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis. Biomacromolecules 12(1):260–268

    Article  CAS  PubMed  Google Scholar 

  • Sovadinova I, Palermo EF, Urban M, Mpiga P, Caputo GA, Kuroda K (2011b) Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers 3(3):1512–1532

    Article  CAS  Google Scholar 

  • Spaar A, Münster C, Salditt T (2004) Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys J 87(1):396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowiak JC, Hayden CC, Sasaki DY (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc Natl Acad Sci 107(17):7781–7786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, Sherman MB, Geissler PL, Fletcher DA, Hayden CC (2012) Membrane bending by protein–protein crowding. Nat Cell Biol 14(9):944–949

    Article  CAS  PubMed  Google Scholar 

  • Taber HW, Mueller J, Miller P, Arrow A (1987) Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 51(4):439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Waring AJ, Hong M (2007) Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state nmr. J Am Chem Soc 129(37):11438–11446

    Article  CAS  PubMed  Google Scholar 

  • Tew GN, Liu DH, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, Klein ML, DeGrado WF (2002) De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci USA 99(8):5110–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaara M (2009) New approaches in peptide antibiotics. Curr Opin Pharmacol 9(5):571–576

    Article  CAS  PubMed  Google Scholar 

  • Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16(3):430–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Does AM, Bogaards SJP, Ravensbergen B, Beekhuizen H, van Dissel JT, Nibbering PH (2010) Antimicrobial peptide hlf1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 54(2):811–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicens Q, Westhof E (2002) Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol 9(6):747–755

    Article  CAS  PubMed  Google Scholar 

  • Walsh PS, Kusaka R, Buchanan EG, James WH, Fisher BF, Gellman SH, Zwier TS (2013) Cyclic constraints on conformational flexibility in gamma-peptides: conformation specific ir and uv spectroscopy. J Phys Chem A 117(47):12350–12362

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang G (2004) Apd: The antimicrobial peptide database. Nucleic Acids Res 32(suppl 1):D590–D592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WLL, Everett ED, Johnson M, Dean E (1977) Susceptibility of propionibacterium acnes to seventeen antibiotics. Antimicrob Agents Chemother 11(1):171–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CW, Sanborn TJ, Huang K, Zuckermann RN, Barron AE (2001) Peptoid oligomers with alpha-chiral, aromatic side chains: sequence requirements for the formation of stable peptoid helices. J Am Chem Soc 123(28):6778–6784

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Cui Q, Yethiraj A (2013) Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations. J Phys Chem B 117(40):12145–12156

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? a case study on melittin pores. Biophys J 81(3):1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  CAS  PubMed  Google Scholar 

  • Yeung AY, Gellatly S, Hancock RW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68(13):2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa A, Kuwahara J, Fujii N, Sugiura Y (1992) Binding of tachyplesin i to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31(11):2998–3004

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Vroman JA, Bae SC, Granick S (2010) Vesicle budding induced by a pore-forming peptide. J Am Chem Soc 132(1):195–201

    Article  CAS  PubMed  Google Scholar 

  • Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from xenopus skin: Isolation, characterization of two active forms, and partial cdna sequence of a precursor. Proc Natl Acad Sci 84(15):5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Markiewicz MJ, Mowery BP, Weisblum B, Stahl SS, Gellman SH (2012) C-terminal functionalization of nylon-3 polymers: effects of c-terminal groups on antibacterial and hemolytic activities. Biomacromolecules 13(2):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Choe U-J, Kamei DT, Wong GCL (2012a) Enhanced activity of cyclic transporter sequences driven by phase behavior of peptide-lipid complexes. Soft Matter 8(24):6430–6433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Choe U-J, Kamei DT, Wong GCL (2012b) Enhanced activity of cyclic transporter sequences driven by phase behavior of peptide-lipid complexes. Soft Matter 8:6430–6433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard C. L. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deshayes, S., Lee, M.W., Schmidt, N.W., Xian, W., Kasko, A., Wong, G.C.L. (2016). How to Teach Old Antibiotics New Tricks. In: Epand, R. (eds) Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Cham. https://doi.org/10.1007/978-3-319-32949-9_10

Download citation

Publish with us

Policies and ethics