Skip to main content

Diversity in Host Defense Antimicrobial Peptides

  • Chapter
  • First Online:
Host Defense Peptides and Their Potential as Therapeutic Agents

Abstract

Host defense antimicrobial peptides are part of the innate immune system of organisms in multicellular eukaryotes. Following the identification of the first insect antimicrobial peptide, cecropin, in moths in 1980 (Eur J Biochem 106(1):7–16, 1980; Nature 292(5820):246–248, 1981) and the first amphibian peptide magainin in 1987 (Proc Natl Acad Sci USA 84(15):5449–5453, 1987), scientists have been exploring the diversity of animal antimicrobial peptides through examination of their sequences, structures and functions. The sequences of antimicrobial host defense peptides are surprisingly diverse as is the lack of commonalities between animals across phyla. Although peptides are classified into categories such as cathelicidins and defensins, the similarity between the active peptides within these categories can sometimes be difficult to find. This is because these peptides share function, structure, and mechanism within groups but often have very different sequences (Clin Microbiol Rev 19(3):491–511, 2006). That is, they have significant structural conservation often without significant sequence conservation. Sorensen and Borregaard (Comb Chem High Throughput Screen 8(3):273–280, 2005) beautifully described the diversity of host defense and antimicrobial peptides as “nature’s attempt at combinatorial chemistry” (Comb Chem High Throughput Screen 8(3):273–280, 2005). In this chapter, we will discuss the diversity of antibacterial peptides from insects and oysters to reptiles and humans. Questions that could be of interest for future research and seem to be currently unanswered are highlighted in boxes throughout the text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfoldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, Ray DA, Boissinot S, Shedlock AM, Botka C, Castoe TA, Colbourne JK, Fujita MK, Moreno RG, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Lara M, Novick PA, Organ CL, Peach SE, Poe S, Pollock DD, de Queiroz K, Sanger T, Searle S, Smith JD, Smith Z, Swofford R, Turner-Maier J, Wade J, Young S, Zadissa A, Edwards SV, Glenn TC, Schneider CJ, Losos JB, Lander ES, Breen M, Ponting CP, Lindblad-Toh K (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591. doi:10.1038/nature10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alibardi L (2013a) Granulocytes of reptilian sauropsids contain beta-defensin-like peptides: a comparative ultrastructural survey. J Morphol 274(8):877–886. doi:10.1002/jmor.20143

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L (2013b) Ultrastructural immunolocalization of beta-defensin-27 in granulocytes of the dermis and wound epidermis of lizard suggests they contribute to the anti-microbial skin barrier. Anat Cell Biol 46(4):246–253. doi:10.5115/acb.2013.46.4.246

    Article  PubMed  PubMed Central  Google Scholar 

  • Alibardi L (2014a) Histochemical, biochemical and cell biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration. Prog Histochem Cytochem 48(4):143–244. doi:10.1016/j.proghi.2013.12.001

    Article  PubMed  Google Scholar 

  • Alibardi L (2014b) Ultrastructural immunolocalization of chatelicidin-like peptides in granulocytes of normal and regenerating lizard tissues. Acta Histochem 116(2):363–371. doi:10.1016/j.acthis.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L, Celeghin A, Dalla Valle L (2012) Wounding in lizards results in the release of beta-defensins at the wound site and formation of an antimicrobial barrier. Dev Comp Immunol 36(3):557–565. doi:10.1016/j.dci.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  • Amer LS, Bishop BM, van Hoek ML (2010) Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 396(2):246–251. doi:10.1016/j.bbrc.2010.04.073

    Article  CAS  PubMed  Google Scholar 

  • Badenhorst D, Hillier LW, Literman R, Montiel EE, Radhakrishnan S, Shen Y, Minx P, Janes DE, Warren WC, Edwards SV, Valenzuela N (2015) Physical mapping and refinement of the painted turtle genome (chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol Evol 7(7):2038–2050. doi:10.1093/gbe/evv119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, Davidson DJ, Donis RO (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 6(10):e25333. doi:10.1371/journal.pone.0025333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann A, Demoulins T, Python S, Summerfield A (2014) Porcine cathelicidins efficiently complex and deliver nucleic acids to plasmacytoid dendritic cells and can thereby mediate bacteria-induced IFN-alpha responses. J Immunol 193(1):364–371. doi:10.4049/jimmunol.1303219

    Article  CAS  PubMed  Google Scholar 

  • Bishop BM, Juba ML, Devine MC, Barksdale SM, Rodriguez CA, Chung MC, Russo PS, Vliet KA, Schnur JM, van Hoek ML (2015) Bioprospecting the American alligator (Alligator mississippiensis) host defense peptidome. PLoS ONE 10(2):e0117394. doi:10.1371/journal.pone.0117394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blower RJ, Barksdale SM, van Hoek ML (2015) snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against burkholderia thailandensis. PLoS Negl Trop Dis 9(7):e0003862. doi:10.1371/journal.pntd.0003862

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolscher JG, van der Kraan MI, Nazmi K, Kalay H, Grun CH, Van’t Hof W, Veerman EC, Nieuw Amerongen AV (2006) A one-enzyme strategy to release an antimicrobial peptide from the LFampin-domain of bovine lactoferrin. Peptides 27(1):1–9. doi:10.1016/j.peptides.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Bustillo ME, Fischer AL, LaBouyer MA, Klaips JA, Webb AC, Elmore DE (2014) Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. Biochim Biophys Acta 1838(9):2228–2233. doi:10.1016/j.bbamem.2014.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carman RL, Old JM, Baker M, Jacques NA, Deane EM (2009) Identification and expression of a novel marsupial cathelicidin from the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol 127(3–4):269–276. doi:10.1016/j.vetimm.2008.10.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87(3):356–365. doi:10.1016/j.ygeno.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW (2015) Evolution of the avian beta-defensin and cathelicidin genes. BMC Evol Biol 15:188. doi:10.1186/s12862-015-0465-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark RJ, Tan CC, Preza GC, Nemeth E, Ganz T, Craik DJ (2011) Understanding the structure/activity relationships of the iron regulatory peptide hepcidin. Chem Biol 18(3):336–343. doi:10.1016/j.chembiol.2010.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole AM, Shi J, Ceccarelli A, Kim YH, Park A, Ganz T (2001) Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 97(1):297–304

    Article  CAS  PubMed  Google Scholar 

  • Crawford MA, Zhu Y, Green CS, Burdick MD, Sanz P, Alem F, O’Brien AD, Mehrad B, Strieter RM, Hughes MA (2009) Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli. Infect Immun 77(4):1664–1678. doi:10.1128/IAI.01208-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford MA, Burdick MD, Glomski IJ, Boyer AE, Barr JR, Mehrad B, Strieter RM, Hughes MA (2010) Interferon-inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection. PLoS Pathog 6(11):e1001199. doi:10.1371/journal.ppat.1001199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford MA, Lowe DE, Fisher DJ, Stibitz S, Plaut RD, Beaber JW, Zemansky J, Mehrad B, Glomski IJ, Strieter RM, Hughes MA (2011) Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis. Proc Natl Acad Sci USA 108(41):17159–17164. doi:10.1073/pnas.1108495108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla Valle L, Benato F, Maistro S, Quinzani S, Alibardi L (2012) Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev Comp Immunol 36(1):222–229. doi:10.1016/j.dci.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  • Das S, Nikolaidis N, Goto H, McCallister C, Li J, Hirano M, Cooper MD (2010) Comparative genomics and evolution of the alpha-defensin multigene family in primates. Mol Biol Evol 27(10):2333–2343. doi:10.1093/molbev/msq118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Latour FA, Amer LS, Papanstasiou EA, Bishop BM, van Hoek ML (2010) Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem Biophys Res Commun 396(4):825–830. doi:10.1016/j.bbrc.2010.04.158

    Article  PubMed  CAS  Google Scholar 

  • Dean SN, Bishop BM, van Hoek ML (2011a) Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol 11:114. doi:10.1186/1471-2180-11-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean SN, Bishop BM, van Hoek ML (2011b) Susceptibility of pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2:128. doi:10.3389/fmicb.2011.00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzati-Tabrizi R, Farrokhi N, Talaei-Hassanloui R, Alavi SM, Hosseininaveh V (2013) Insect inducible antimicrobial peptides and their applications. Curr Protein Pept Sci 14(8):698–710

    CAS  PubMed  Google Scholar 

  • Fox MA, Thwaite JE, Ulaeto DO, Atkins TP, Atkins HS (2012) Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides 33(2):197–205. doi:10.1016/j.peptides.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  • Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306(2):257–264. doi:10.1007/s004410100433

    Article  CAS  PubMed  Google Scholar 

  • Gesell J, Zasloff M, Opella SJ (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9(2):127–135

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez M, Gueguen Y, Desserre G, de Lorgeril J, Romestand B, Bachere E (2007) Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev Comp Immunol 31(4):332–339. doi:10.1016/j.dci.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  • Gueguen Y, Herpin A, Aumelas A, Garnier J, Fievet J, Escoubas JM, Bulet P, Gonzalez M, Lelong C, Favrel P, Bachere E (2006) Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 281(1):313–323. doi:10.1074/jbc.M510850200

    Article  CAS  PubMed  Google Scholar 

  • Han S, Bishop BM, van Hoek ML (2008) Antimicrobial activity of human beta-defensins and induction by Francisella. Biochem Biophys Res Commun 371(4):670–674. doi:10.1016/j.bbrc.2008.04.092

    Article  CAS  PubMed  Google Scholar 

  • Harikrishna N, Rao MS, Murty US (2012) Immune peptides modelling of Culex pipiens sp by in silico methods. J Vector Borne Dis 49(1):19–22

    CAS  PubMed  Google Scholar 

  • Herve-Grepinet V, Rehault-Godbert S, Labas V, Magallon T, Derache C, Lavergne M, Gautron J, Lalmanach AC, Nys Y (2010) Purification and characterization of avian beta-defensin 11, an antimicrobial peptide of the hen egg. Antimicrob Agents Chemother 54(10):4401–4409. doi:10.1128/AAC.00204-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton KB, Lambert LA (2008) Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 415(1–2):40–48. doi:10.1016/j.gene.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  • Hong SM, Kusakabe T, Lee JM, Tatsuke T, Kawaguchi Y, Kang MW, Kang SW, Kim KA, Nho SK (2008) Structure and expression analysis of the cecropin-E gene from the silkworm,Bombyx mori. Biosci Biotechnol Biochem 72(8):1992–1998. doi:10.1271/bbb.80082

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Wang C, Guo X, Li W, Wang Y, He Q (2013) Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Mol Cells 35(2):106–114. doi:10.1007/s10059-013-2132-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. doi:10.1128/CMR.00056-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V, Kohno H, Kim H, Schnier PD, Harvey TS, Miranda LP, Cheetham J, Sasu BJ (2009) Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem 284(36):24155–24167. doi:10.1074/jbc.M109.017764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juba ML, Russo PS, Devine M, Barksdale S, Rodriguez C, Vliet KA, Schnur JM, van Hoek ML, Bishop BM (2015) Large scale discovery and De Novo-assisted sequencing of cationic antimicrobial peptides (CAMPs) by microparticle capture and electron-transfer dissociation (ETD) mass spectrometry. J Proteome Res 14(10):4282–4295. doi:10.1021/acs.jproteome.5b00447

    Article  CAS  PubMed  Google Scholar 

  • Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. Rev Mol Biol Rep 39(12):10957–10970. doi:10.1007/s11033-012-1997-x

    Article  CAS  Google Scholar 

  • Kouno T, Fujitani N, Mizuguchi M, Osaki T, Nishimura S, Kawabata S, Aizawa T, Demura M, Nitta K, Kawano K (2008) A novel beta-defensin structure: a potential strategy of big defensin for overcoming resistance by Gram-positive bacteria. Biochemistry 47(40):10611–10619. doi:10.1021/bi800957n

    Article  CAS  PubMed  Google Scholar 

  • Kouno T, Mizuguchi M, Aizawa T, Shinoda H, Demura M, Kawabata S, Kawano K (2009) A novel beta-defensin structure: big defensin changes its N-terminal structure to associate with the target membrane. Biochemistry 48(32):7629–7635. doi:10.1021/bi900756y

    Article  CAS  PubMed  Google Scholar 

  • Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M, Demura M, Kawabata S, Kawano S (2014) Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochim Biophys Acta 1844(3):527–534. doi:10.1016/j.bbapap.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayanan R, Vivekanandan S, Samy RP, Banerjee Y, Chi-Jin EO, Teo KW, Jois SD, Kini RM, Valiyaveettil S (2008) Structure, self-assembly, and dual role of a beta-defensin-like peptide from the Chinese soft-shelled turtle eggshell matrix. J Am Chem Soc 130(14):4660–4668. doi:10.1021/ja075659k

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Jeong KW, Lee J, Shin A, Kim JK, Lee J, Lee DG, Kim Y (2013) Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 46(5):282–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Yang ST, Lee SK, Jung HH, Shin SY, Hahm KS, Kim JI (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J 275(15):3911–3920. doi:10.1111/j.1742-4658.2008.06536.x

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11(1):23–27

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9(1):18–22

    Article  PubMed  Google Scholar 

  • Lehrer RI, Lu W (2012) Alpha-defensins in human innate immunity. Immunol Rev 245(1):84–112. doi:10.1111/j.1600-065X.2011.01082.x

    Article  CAS  PubMed  Google Scholar 

  • Li SA, Lee WH, Zhang Y (2012) Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models. Antimicrob Agents Chemother 56(6):3309–3317. doi:10.1128/AAC.06304-11

    Google Scholar 

  • Madhongsa K, Pasan S, Phophetleb O, Nasompag S, Thammasirirak S, Daduang S, Taweechaisupapong S, Lomize AL, Patramanon R (2013) Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis 7(6):e2267. doi:10.1371/journal.pntd.0002267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mine Y, Oberle C, Kassaify Z (2003) Eggshell matrix proteins as defense mechanism of avian eggs. J Agric Food Chem 51(1):249–253. doi:10.1021/jf020597x

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Epand RF, Epand RM, Wang G (2013) Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37. RSC Adv (42). doi:10.1039/C3RA42599A

    Google Scholar 

  • Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC, Yazdanbakhsh M, Bikker FJ, van der Kleij D (2009) Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 390(4):295–303. doi:10.1515/BC.2009.037

    Article  CAS  PubMed  Google Scholar 

  • Nagant C, Pitts B, Nazmi K, Vandenbranden M, Bolscher JG, Stewart PS, Dehaye JP (2012) Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother 56(11):5698–5708. doi:10.1128/AAC.00918-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizet V, Gallo RL (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis 35(9):670–676. doi:10.1080/00365540310015629

    Article  CAS  PubMed  Google Scholar 

  • Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6(10):497–511. doi:10.1002/1099-1387(200010)6:10<497:AID-PSC277>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182. doi:10.1128/IAI.00318-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanastasiou EA, Hua Q, Sandouk A, Son UH, Christenson AJ, Van Hoek ML, Bishop BM (2009) Role of acetylation and charge in antimicrobial peptides based on human beta-defensin-3. APMIS 117(7):492–499. doi:10.1111/j.1600-0463.2009.02460.x

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810. doi:10.1074/jbc.M008922200

    Article  CAS  PubMed  Google Scholar 

  • Pavia KE, Spinella SA, Elmore DE (2012) Novel histone-derived antimicrobial peptides use different antimicrobial mechanisms. Biochim Biophys Acta 1818(3):869–876. doi:10.1016/j.bbamem.2011.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson T, Learmonth-Pierson S, Pinto D, van Hoek ML (2013) Cigarette smoke extract induces differential expression levels of beta-defensin peptides in human alveolar epithelial cells. Tob Induc Dis 11(1):10. doi:10.1186/1617-9625-11-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponkham P, Daduang S, Kitimasak W, Krittanai C, Chokchaichamnankit D, Srisomsap C, Svasti J, Kawamura S, Araki T, Thammasirirak S (2010) Complete amino acid sequence of three reptile lysozymes. Comp Biochem Physiol C: Toxicol Pharmacol 151(1):75–83. doi:10.1016/j.cbpc.2009.08.010

    Google Scholar 

  • Rapala-Kozik M, Bochenska O, Zawrotniak M, Wolak N, Trebacz G, Gogol M, Ostrowska D, Aoki W, Ueda M, Kozik A (2015) Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 83(6):2518–2530. doi:10.1128/IAI.00023-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-Santiago B, Rivas Santiago CE, Castaneda-Delgado JE, Leon-Contreras JC, Hancock RE, Hernandez-Pando R (2013) Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int J Antimicrob Agents 41(2):143–148. doi:10.1016/j.ijantimicag.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, Bulut Y (2014) Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun 82(2):745–752. doi:10.1128/IAI.00983-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosa RD, Santini A, Fievet J, Bulet P, Destoumieux-Garzon D, Bachere E (2011) Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS ONE 6(9):e25594. doi:10.1371/journal.pone.0025594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa RD, Alonso P, Santini A, Vergnes A, Bachere E (2015) High polymorphism in big defensin gene expression reveals presence-absence gene variability (PAV) in the oyster Crassostrea gigas. Dev Comp Immunol 49(2):231–238. doi:10.1016/j.dci.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  • Rozek A, Friedrich CL, Hancock RE (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39(51):15765–15774

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M, Iwanaga S (1995) A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem 117(5):1131–1137

    CAS  PubMed  Google Scholar 

  • Schmitt P, Wilmes M, Pugniere M, Aumelas A, Bachere E, Sahl HG, Schneider T, Destoumieux-Garzon D (2010) Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J Biol Chem 285(38):29208–29216. doi:10.1074/jbc.M110.143388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt P, Rosa RD, Duperthuy M, de Lorgeril J, Bachere E, Destoumieux-Garzon D (2012) The Antimicrobial Defense of the Pacific Oyster, Crassostrea gigas. How Diversity may Compensate for Scarcity in the Regulation of Resident/Pathogenic Microflora. Front Microbiol 3:160. doi:10.3389/fmicb.2012.00160

  • Schroeder BO, Stange EF, Wehkamp J (2011a) Waking the wimp: redox-modulation activates human beta-defensin 1. Gut Microbes 2(4):262–266. doi:10.4161/gmic.2.4.17692

    Article  PubMed  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011b) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423. doi:10.1038/nature09674

    Article  CAS  PubMed  Google Scholar 

  • Schulenburg H, Boehnisch C, Michiels NK (2007) How do invertebrates generate a highly specific innate immune response? Mol Immunol 44(13):3338–3344. doi:10.1016/j.molimm.2007.02.019

    Article  CAS  PubMed  Google Scholar 

  • Semple CA, Gautier P, Taylor K, Dorin JR (2006) The changing of the guard: molecular diversity and rapid evolution of beta-defensins. Mol Divers 10(4):575–584. doi:10.1007/s11030-006-9031-7

    Article  CAS  PubMed  Google Scholar 

  • Sorensen OE, Borregaard N (2005) Cathelicidins–nature’s attempt at combinatorial chemistry. Comb Chem High Throughput Screen 8(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246–248

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Zhan B, Gao Y (2015) A novel cathelicidin from Bufo bufo gargarizans Cantor showed specific activity to its habitat bacteria. Gene 571(2):172–177. doi:10.1016/j.gene.2015.06.034

    Article  CAS  PubMed  Google Scholar 

  • Tako E, Rutzke MA, Glahn RP (2010) Using the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailability. Poult Sci 89(3):514–521. doi:10.3382/ps.2009-00326

    Article  CAS  PubMed  Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins–structure, function and evolution. Curr Protein Pept Sci 6(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Tongaonkar P, Golji AE, Tran P, Ouellette AJ, Selsted ME (2012) High fidelity processing and activation of the human alpha-defensin HNP1 precursor by neutrophil elastase and proteinase 3. PLoS ONE 7(3):e32469. doi:10.1371/journal.pone.0032469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk A, Veldhuizen EJ, van Asten AJ, Haagsman HP (2005) CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet Immunol Immunopathol 106(3-4):321–327. doi:10.1016/j.vetimm.2005.03.003

    Google Scholar 

  • van Dijk A, Tersteeg-Zijderveld MH, Tjeerdsma-van Bokhoven JL, Jansman AJ, Veldhuizen EJ, Haagsman HP (2009) Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature Cathelicidin-2 upon stimulation with LPS. Mol Immunol 46(7):1517–1526. doi:10.1016/j.molimm.2008.12.015

    Article  PubMed  CAS  Google Scholar 

  • van Dijk A, Molhoek EM, Bikker FJ, Yu PL, Veldhuizen EJ, Haagsman HP (2011) Avian cathelicidins: Paradigms for the development of anti-infectives. Vet Microbiol 153:27–36

    Google Scholar 

  • van Hoek ML (2014) Antimicrobial peptides in reptiles. Pharmaceuticals (Basel) 7(6):723–753. doi:10.3390/ph7060723

    Article  CAS  Google Scholar 

  • Wang Z, Wang G (2004) APD: the Antimicrobial Peptide Database. Nucleic Acids Res 32 (Database issue):D590–592. doi:10.1093/nar/gkh025

    Google Scholar 

  • Wang Y, Walter G, Herting E, Agerberth B, Johansson J (2004) Antibacterial activities of the cathelicidins prophenin (residues 62 to 79) and LL-37 in the presence of a lung surfactant preparation. Antimicrob Agents Chemother 48(6):2097–2100. doi:10.1128/AAC.48.6.2097-2100.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R (2008) Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE 3(9):e3217. doi:10.1371/journal.pone.0003217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37 (Database issue):D933–937. doi:10.1093/nar/gkn823

    Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, Yin Y, Aken B, Zhang G, Irie N (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45(6):701–706. doi:10.1038/ng.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Mishra B, Epand RF, Epand RM (2014) High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta 1838(9):2160–2172. doi:10.1016/j.bbamem.2014.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CL, Schmidt AP, Pirila E, Valore EV, Ferri N, Sorsa T, Ganz T, Parks WC (2009) Differential processing of {alpha}- and {beta}-defensin precursors by matrix metalloproteinase-7 (MMP-7). J Biol Chem 284(13):8301–8311. doi:10.1074/jbc.M809744200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA 100(15):8880–8885. doi:10.1073/pnas.1533186100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang G (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genom 5(1):56. doi:10.1186/1471-2164-5-56

    Article  CAS  Google Scholar 

  • Xiao Y, Cai Y, Bommineni YR, Fernando SC, Prakash O, Gilliland SE, Zhang G (2006) Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem 281(5):2858–2867. doi:10.1074/jbc.M507180200

    Google Scholar 

  • Yan X, Zhong J, Liu H, Liu C, Zhang K, Lai R (2012) The cathelicidin-like peptide derived from panda genome is a potential antimicrobial peptide. Gene 492(2):368–374. doi:10.1016/j.gene.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Sanchez JF, Strub MP, Brutscher B, Aumelas A (2003) NMR structure of the cathelin-like domain of the protegrin-3 precursor. Biochemistry 42(16):4669–4680. doi:10.1021/bi027133c

    Article  CAS  PubMed  Google Scholar 

  • Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822. doi:10.1007/s00253-014-5792-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196

    CAS  PubMed  Google Scholar 

  • Zanetti M, Gennaro R, Scocchi M, Skerlavaj B (2000) Structure and biology of cathelicidins. Adv Exp Med Biol 479:203–218. doi:10.1007/0-306-46831-X_17

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84(15):5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XL, Selsted ME, Pardi A (1992) NMR studies of defensin antimicrobial peptides. 1. Resonance assignment and secondary structure determination of rabbit NP-2 and human HNP-1. Biochemistry 31(46):11348–11356

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH, Zhang Y (2008) Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 29(10):1685–1691. doi:10.1016/j.peptides.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Lu W (2014) Defensins in innate immunity. Curr Opin Hematol 21(1):37–42. doi:10.1097/MOH.0000000000000005

    Article  CAS  PubMed  Google Scholar 

  • Zhu S (2008) Positive selection targeting the cathelin-like domain of the antimicrobial cathelicidin family. Cell Mol Life Sci 65(7–8):1285–1294. doi:10.1007/s00018-008-8070-x

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao B (2009) A fossil antibacterial peptide gives clues to structural diversity of cathelicidin-derived host defense peptides. FASEB J 23(1):13–20. doi:10.1096/fj.08-114579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. Barney Bishop for helpful discussions, and the Defense Threat Reduction Agency (HDTRA1-12-C-0039) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique L. van Hoek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Hoek, M.L. (2016). Diversity in Host Defense Antimicrobial Peptides. In: Epand, R. (eds) Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Cham. https://doi.org/10.1007/978-3-319-32949-9_1

Download citation

Publish with us

Policies and ethics