Skip to main content

Research Advances in Negative-Strand Plant RNA Viruses

  • Chapter
  • First Online:

Abstract

Plant negative-strand RNA viruses cause a number of significant diseases in agriculturally important crops worldwide. As the counterpart of mammalian-infecting viruses, the negative-strand plant viruses share similarities with mammalian viruses in their particle morphology and genome organization. Similar to mammalian-infecting viruses, the genomic RNAs of plant negative-strand viruses are associated with a nucleocapsid protein to form a ribonucleocapsid core which are minimal infectious units and essential for viral replication and transcription. To adapt to the plant host, plant negative-strand RNA viruses have evolved not only movement proteins to aid the viruses moving between plant cells but also RNA silencing suppressors to attack the plant innate immune system. In this article we present an overview of the negative-strand RNA plant viruses classified within the families Bunyaviridae, Ophioviridae, Rhabdoviridae and genera Tenuivirus, Emaravirus and Varicosavirus. We highlight important discoveries over the last decade regarding the replication, transcription, movement, suppression of RNA silencing, and insect transmission of these negative-strand viruses, and antiviral strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ammar ED, Tsai CW, Whitfield AE, Redinbaugh MG, Hogenhout SA (2009) Cellular and molecular aspects of Rhabdovirus interactions with insect and plant hosts. Annu Rev Entomol 54:447–468

    Article  CAS  Google Scholar 

  • Bandyopadhyay A, Kopperud K, Anderson G, Martin K, Goodin M (2010) An integrated protein localization and interaction map for Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virology 402:61–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhushan L, Abraham A, Choudhury NR, Rana VS, Mukherjee SK, Savithri HS (2015) Demonstration of helicase activity in the nonstructural protein, NSs, of the negative-sense RNA virus, Groundnut bud necrosis virus. Arch Virol 160:959–967

    Article  CAS  PubMed  Google Scholar 

  • Bucher E, Sijen T, De Haan P, Goldbach R, Prins M (2003) Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TC, Li JT, Fan YS, Yeh YC, Yeh SD, Kormelink R (2013) Molecular characterization of the full-length L and M RNAs of Tomato yellow ring virus, a member of the genus Tospovirus. Virus Genes 46:487–495

    Article  CAS  PubMed  Google Scholar 

  • Daspute A, Fakrudin B (2015) Identification of coupling and repulsion phase DNA marker associated with an allele of a gene conferring host plant resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.). Plant Pathol J 31:33–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Daspute A, Fakrudin B, Bhairappanavar SB, Kavil SP, Narayana YD, Muniswamy A, Kaumar PU, Krishnaraj AY, Khadi BM (2014) Inheritance of pigeonpea sterility mosaic disease resistance in pigeonpea. Plant Pathol J 30:188–194

    Article  PubMed  PubMed Central  Google Scholar 

  • de Medeiros RB, Figueiredo J, Resende Rde O, De Avila AC (2005) Expression of a viral polymerase-bound host factor turns human cell lines permissive to a plant- and insect-infecting virus. Proc Natl Acad Sci U S A 102:1175–1180

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R (2014) Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol Plant Pathol 15:185–195

    Article  PubMed  Google Scholar 

  • Du Z, Xiao D, Wu J, Jia D, Yuan Z, Liu Y, Hu L, Han Z, Wei T, Lin Q, Wu Z, Xie L (2011) p2 of rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol Plant Pathol 12:808–814

    Article  CAS  PubMed  Google Scholar 

  • Duijsings D, Kormelink R, Goldbach R (2001) In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J 20:2545–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeaino T, Whitfield A, Sharma M, Digiaro M (2013) Emaravirus-specific degenerate PCR primers allowed the identification of partial RNA-dependent RNA polymerase sequences of Maize red stripe virus and Pigeonpea sterility mosaic virus. J Virol Methods 188:37–40

    Article  CAS  PubMed  Google Scholar 

  • Elbeaino T, Digiaro M, Uppala M, Sudini H (2014) Deep sequencing of pigeonpea sterility mosaic virus discloses five RNA segments related to emaraviruses. Virus Res 188:27–31

    Article  CAS  PubMed  Google Scholar 

  • Falk BW, Tsai JH (1998) Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 36:139–163

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Chen X, Bao Y, Dong J, Zhang Z, Tao X (2013) Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol 200:1212–1224

    Article  CAS  PubMed  Google Scholar 

  • Ganesan U, Bragg JN, Deng M, Marr S, Lee MY, Qian S, Shi M, Kappel J, Peters C, Lee Y, Goodin MM, Dietzgen RG, Li Z, Jackson AO (2013) Construction of a Sonchus Yellow Net Virus minireplicon: a step toward reverse genetic analysis of plant negative-strand RNA viruses. J Virol 87:10598–10611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodin MM, Chakrabarty R, Yelton S, Martin K, Clark A, Brooks R (2007) Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net virus, a plant-adapted rhabdovirus. J Gen Virol 88:1810–1820

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Song X, Xie C, Huo Y, Zhang F, Chen X, Geng Y, Fang R (2013) Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. Mol Plant Microbe Interact 26:927–936

    Article  CAS  PubMed  Google Scholar 

  • Hemmes H, Lakatos L, Goldbach R, Burgyan J, Prins M (2007) The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA 13:1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmes H, Kaaij L, Lohuis D, Prins M, Goldbach R, Schnettler E (2009) Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of rice hoja blanca virus NS3 in plants. J Gen Virol 90:1762–1766

    Article  CAS  PubMed  Google Scholar 

  • Hiraguri A, Netsu O, Shimizu T, Uehara-Ichiki T, Omura T, Sasaki N, Nyunoya H, Sasaya T (2011) The nonstructural protein pC6 of rice grassy stunt virus trans-complements the cell-to-cell spread of a movement-defective tomato mosaic virus. Arch Virol 156:911–916

    Article  CAS  PubMed  Google Scholar 

  • Hiraguri A, Ueki S, Kondo H, Nomiyama K, Shimizu T, Ichiki-Uehara T, Omura T, Sasaki N, Nyunoya H, Sasaya T (2013) Identification of a movement protein of Mirafiori lettuce big-vein ophiovirus. J Gen Virol 94:1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Redinbaugh MG, Ammar ED (2003) Plant and animal rhabdovirus host range: a bug’s view. Trends Microbiol 11:264–271

    Article  CAS  PubMed  Google Scholar 

  • Huang YW, Geng YF, Ying XB, Chen XY, Fang RX (2005) Identification of a movement protein of rice yellow stunt rhabdovirus. J Virol 79:2108–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huiet L, Feldstein PA, Tsai JH, Falk BW (1993) The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5′ termini. Virology 197:808–812

    Article  CAS  PubMed  Google Scholar 

  • Huo Y, Liu W, Zhang F, Chen X, Li L, Liu Q, Zhou Y, Wei T, Fang R, Wang X (2014) Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathog 10:e1003949

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa K, Omura T, Hibino H (1989) Morphological-Characteristics of Rice Stripe Virus. J Gen Virol 70:3465–3468

    Article  Google Scholar 

  • Ishikawa K, Maejima K, Komatsu K, Netsu O, Keima T, Shiraishi T, Okano Y, Hashimoto M, Yamaji Y, Namba S (2013) Fig mosaic emaravirus p4 protein is involved in cell-to-cell movement. J Gen Virol 94:682–686

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Miura C, Maejima K, Komatsu K, Hashimoto M, Tomomitsu T, Fukuoka M, Yusa A, Yamaji Y, Namba S (2015) Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming. J Virol 89:480–491

    Article  PubMed  Google Scholar 

  • Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M (2005) Biology of plant rhabdoviruses. Annu Rev Phytopathol 43:623–660

    Article  CAS  PubMed  Google Scholar 

  • Kikkert M, Van Lent J, Storms M, Bodegom P, Kormelink R, Goldbach R (1999) Tomato spotted wilt virus particle morphogenesis in plant cells. J Virol 73:2288–2297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komoda K, Ishibashi K, Kawamura-Nagaya K, Ishikawa M (2014) Possible involvement of eEF1A in Tomato spotted wilt virus RNA synthesis. Virology 468–470:81–87

    Article  PubMed  Google Scholar 

  • Kong L, Wu J, Lu L, Xu Y, Zhou X (2014) Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant 7:691–708

    Article  CAS  PubMed  Google Scholar 

  • Kormelink R, van Poelwijk F, Peters D, Goldbach R (1992) Non-viral heterogeneous sequences at the 5′ ends of tomato spotted wilt virus mRNAs. J Gen Virol 73(Pt 8):2125–2128

    Article  CAS  PubMed  Google Scholar 

  • Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65

    Article  CAS  PubMed  Google Scholar 

  • Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL (2011) Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162:184–202

    Article  CAS  PubMed  Google Scholar 

  • Kritzman A, Gera A, Raccah B, van Lent JW, Peters D (2002) The route of tomato spotted wilt virus inside the thrips body in relation to transmission efficiency. Arch Virol 147:2143–2156

    Article  CAS  PubMed  Google Scholar 

  • Leastro MO, Pallas V, Resende RO, Sanchez-Navarro JA (2015) The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 478C:39–49

    Article  Google Scholar 

  • Li W, Lewandowski DJ, Hilf ME, Adkins S (2009) Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390:110–121

    Article  CAS  PubMed  Google Scholar 

  • Li J, Feng Z, Wu J, Huang Y, Lu G, Zhu M, Wang B, Mao X, Tao X (2015a) Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling. J Biol Chem 290:3950–3961

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wang S, Wang X, Li X, Zi J, Ge S, Cheng Z, Zhou T, Ji Y, Deng J, Wong SM, Zhou Y (2015b) Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos. Sci Rep 5:7883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lokesh B, Rashmi PR, Amruta BS, Srisathiyanarayanan D, Murthy MR, Savithri HS (2010) NSs encoded by groundnut bud necrosis virus is a bifunctional enzyme. PLoS One 5:e9757

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L (2011) Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J Gen Virol 92:210–215

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wu W, Chen H, Liu Q, Jia D, Mao Q, Chen Q, Wu Z, Wei T (2013) An insect cell line derived from the small brown planthopper supports replication of rice stripe virus, a tenuivirus. J Gen Virol 94:1421–1425

    Article  CAS  PubMed  Google Scholar 

  • Mann KS, Dietzgen RG (2014) Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Arch Virol 159:1889–1900

    Article  CAS  PubMed  Google Scholar 

  • Mann KS, Johnson KN, Dietzgen RG (2015) Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology 476:413–418

    Article  CAS  PubMed  Google Scholar 

  • Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. Mol Plant Microbe Interact 20:547–558

    Article  CAS  PubMed  Google Scholar 

  • Margaria P, Bosco L, Vallino M, Ciuffo M, Mautino GC, Tavella L, Turina M (2014) The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J Virol 88:5788–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin KM, Dietzgen RG, Wang R, Goodin MM (2012) Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. J Gen Virol 93:906–914

    Article  CAS  PubMed  Google Scholar 

  • Medeiros RB, Resende Rde O, de Avila AC (2004) The plant virus Tomato Spotted Wilt Tospovirus activates the immune system of its main insect vector, Frankliniella occidentalis. J Virol 78:4976–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min BE, Martin K, Wang R, Tafelmeyer P, Bridges M, Goodin M (2010) A host-factor interaction and localization map for a plant-adapted rhabdovirus implicates cytoplasm-tethered transcription activators in cell-to-cell movement. Mol Plant Microbe Interact 23:1420–1432

    Article  CAS  PubMed  Google Scholar 

  • Mitter N, Koundal V, Williams S, Pappu H (2013) Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS One 8:e76276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Astua M, Rotenberg D, Leach-Kieffaber A, Schneweis BA, Park S, Park JK, German TL, Whitfield AE (2014) Disruption of vector transmission by a plant-expressed viral glycoprotein. Mol Plant Microbe Interact 27:296–304

    Article  CAS  PubMed  Google Scholar 

  • Mühlbach H-P, Mielke-Ehret N (2012) Genus Emaravirus. Virus Taxonomy, Ninth report of the International Committee on Taxonomy of Viruses:767–769.

    Google Scholar 

  • Oliveira VC, Bartasson L, de Castro ME, Correa JR, Ribeiro BM, Resende RO (2011) A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines. Virus Res 155:259–267

    Article  CAS  PubMed  Google Scholar 

  • Paape M, Solovyev AG, Erokhina TN, Minina EA, Schepetilnikov MV, Lesemann DE, Schiemann J, Morozov SY, Kellmann JW (2006) At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. Mol Plant Microbe Interact 19:874–883

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Resende Rde O, Anker C, van Schepen A, de Haan P, Goldbach R (1996) Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Mol Plant Microbe Interact 9:416–418

    Article  CAS  PubMed  Google Scholar 

  • Ramirez BC, Garcin D, Calvert LA, Kolakofsky D, Haenni AL (1995) Capped nonviral sequences at the 5′ end of the mRNAs of rice hoja blanca virus RNA4. J Virol 69:1951–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes CA, Pena EJ, Zanek MC, Sanchez DV, Grau O, Garcia ML (2009) Differential resistance to Citrus psorosis virus in transgenic Nicotiana benthamiana plants expressing hairpin RNA derived from the coat protein and 54K protein genes. Plant Cell Rep 28:1817–1825

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro D, Foresti O, Denecke J, Wellink J, Goldbach R, Kormelink RJ (2008) Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells. J Gen Virol 89:1811–1818

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro D, Goldbach R, Kormelink R (2009) Requirements for ER-arrest and sequential exit to the golgi of Tomato spotted wilt virus glycoproteins. Traffic 10:664–672

    Article  CAS  PubMed  Google Scholar 

  • Richmond KE, Chenault K, Sherwood JL, German TL (1998) Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein. Virology 248:6–11

    Article  CAS  PubMed  Google Scholar 

  • Robles Luna G, Pena EJ, Borniego MB, Heinlein M, Garcia ML (2013) Ophioviruses CPsV and MiLBVV movement protein is encoded in RNA 2 and interacts with the coat protein. Virology 441:152–161

    Article  CAS  PubMed  Google Scholar 

  • Rong L, Lu Y, Lin L, Zheng H, Yan F, Chen J (2014) A transmembrane domain determines the localization of rice stripe virus pc4 to plasmodesmata and is essential for its function as a movement protein. Virus Res 183:112–116

    Article  CAS  PubMed  Google Scholar 

  • Schnettler E, Hemmes H, Goldbach R, Prins M (2008) The NS3 protein of rice hoja blanca virus suppresses RNA silencing in mammalian cells. J Gen Virol 89:336–340

    Article  CAS  PubMed  Google Scholar 

  • Schnettler E, de Vries W, Hemmes H, Haasnoot J, Kormelink R, Goldbach R, Berkhout B (2009) The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Tat. EMBO Rep 10:258–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnettler E, Hemmes H, Huismann R, Goldbach R, Prins M, Kormelink R (2010) Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. J Virol 84:11542–11554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholthof KB, Hillman BI, Modrell B, Heaton LA, Jackson AO (1994) Characterization and detection of sc4: a sixth gene encoded by sonchus yellow net virus. Virology 204:279–288

    Article  CAS  PubMed  Google Scholar 

  • Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Toriyama S, Takahashi M, Akutsu K, Yoneyama K (1996) Non-viral sequences at the 5′ termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. J Gen Virol 77(Pt 3):541–546

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Ogamino T, Hiraguri A, Nakazono-Nagaoka E, Uehara-Ichiki T, Nakajima M, Akutsu K, Omura T, Sasaya T (2013) Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103:513–519

    Article  PubMed  Google Scholar 

  • Sin SH, McNulty BC, Kennedy GG, Moyer JW (2005) Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci U S A 102:5168–5173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snippe M, Smeenk L, Goldbach R, Kormelink R (2007a) The cytoplasmic domain of tomato spotted wilt virus Gn glycoprotein is required for Golgi localisation and interaction with Gc. Virology 363:272–279

    Article  CAS  PubMed  Google Scholar 

  • Snippe M, Willem Borst J, Goldbach R, Kormelink R (2007b) Tomato spotted wilt virus Gc and N proteins interact in vivo. Virology 357:115–123

    Article  CAS  PubMed  Google Scholar 

  • Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 97:2373–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford CA, Walker GP, Ullman DE (2011) Infection with a plant virus modifies vector feeding behavior. Proc Natl Acad Sci U S A 108:9350–9355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storms MM, Kormelink R, Peters D, Van Lent JW, Goldbach RW (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493

    Article  CAS  PubMed  Google Scholar 

  • Tatineni S, McMechan AJ, Wosula EN, Wegulo SN, Graybosch RA, French R, Hein GL (2014) An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein. J Virol 88:11834–11845

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai CW, Redinbaugh MG, Willie KJ, Reed S, Goodin M, Hogenhout SA (2005) Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins. J Virol 79:5304–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrig JF, Soellick TR, Minke CJ, Philipp C, Kellmann JW, Schreier PH (1999) Homotypic interaction and multimerization of nucleocapsid protein of tomato spotted wilt tospovirus: identification and characterization of two interacting domains. Proc Natl Acad Sci U S A 96:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaira AM, Gago-Zachert S, Garcia ML (2012) Family Ophioviridae. Virus taxonomy, Ninth report of the International Committee on Taxonomy of Viruses:743–748

    Google Scholar 

  • van Knippenberg I, Lamine M, Goldbach R, Kormelink R (2005) Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology 335:122–130

    Article  PubMed  Google Scholar 

  • van Poelwijk F, Kolkman J, Goldbach R (1996) Sequence analysis of the 5′ ends of tomato spotted wilt virus N mRNAs. Arch Virol 141:177–184

    Article  PubMed  Google Scholar 

  • Walia JJ, Falk BW (2012) Fig mosaic virus mRNAs show generation by cap-snatching. Virology 426:162–166

    Article  CAS  PubMed  Google Scholar 

  • Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR (2011) Rhabdovirus accessory genes. Virus Res 162:110–125

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Verbeek M (2012) Genus Varicosavirus. Virus taxonomy, Ninth report of the International Committee on Taxonomy of Viruses:777–781

    Google Scholar 

  • Wang Q, Liu Y, He J, Zheng X, Hu J, Dai H, Zhang Y, Wang B, Wu W, Gao H, Tao X, Deng H, Yuan D, Jiang L, Zhang X, Guo X, Cheng X, Wu C, Wang H, Yuan L, Wan J (2014) STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun 5:4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward CW (1993) Progress towards a higher taxonomy of viruses. Res Virol 144:419–453

    Article  CAS  PubMed  Google Scholar 

  • Whitfield AE, Kumar NK, Rotenberg D, Ullman DE, Wyman EA, Zietlow C, Willis DK, German TL (2008) A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology 98:45–50

    Article  CAS  PubMed  Google Scholar 

  • Xiong R, Wu J, Zhou Y, Zhou X (2008) Identification of a movement protein of the tenuivirus rice stripe virus. J Virol 82:12304–12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong R, Wu J, Zhou Y, Zhou X (2009) Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 387:29–40

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhou X (2012) Role of Rice Stripe Virus NSvc4 in Cell-to-Cell Movement and Symptom Development in Nicotiana benthamiana. Front Plant Sci 3:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Huang L, Fu S, Wu J, Zhou X (2012) Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLoS One 7:e46238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wu J, Fu S, Li C, Zhu ZR, Zhou X (2015) Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3. J Virol 89:4296–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Tan SH, Teh YJ, Yuan YA (2011) Structural implications into dsRNA binding and RNA silencing suppression by NS3 protein of Rice Hoja Blanca Tenuivirus. RNA 17:903–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao M, Zhang T, Zhou T, Zhou Y, Zhou X, Tao X (2012) Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J Gen Virol 93:194–202

    Article  CAS  PubMed  Google Scholar 

  • Yazhisai U, Rajagopalan PA, Raja JA, Chen TC, Yeh SD (2015) Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Res 24:635–649

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Zheng K, Dong J, Fang Q, Wu S, Wang L, Zhang Z (2014) Identification of a new tospovirus causing necrotic ringspot on tomato in China. Virol J 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, Karlin DG, Lu Y, Wright K, Chen J, MacFarlane S (2013) Experimental and bioinformatic evidence that raspberry leaf blotch emaravirus P4 is a movement protein of the 30K superfamily. J Gen Virol 94:2117–2128

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Chen H, Chen Q, Omura T, Xie L, Wu Z, Wei T (2011) The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of Rice stripe virus. Virus Res 159:62–68

    Article  CAS  PubMed  Google Scholar 

  • Zanek MC, Reyes CA, Cervera M, Pena EJ, Velazquez K, Costa N, Plata MI, Grau O, Pena L, Garcia ML (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yuan Y, Yuan F, Wang M, Zhong H, Gu M, Liang G (2012) RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol Lett 34:965–972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants from the National Natural Science Foundation of China (31471746 and 31222045) and a grant from the National Program on Key Basic Research Project of China (973 Program, 2014CB138400). We thank Min Xu for critically reading the manuscript and Jamie McNeil for improving English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tao, X., Zhou, X., Li, J. (2016). Research Advances in Negative-Strand Plant RNA Viruses. In: Wang, A., Zhou, X. (eds) Current Research Topics in Plant Virology. Springer, Cham. https://doi.org/10.1007/978-3-319-32919-2_12

Download citation

Publish with us

Policies and ethics