Skip to main content

Research Advances in Geminiviruses

  • Chapter
  • First Online:
Book cover Current Research Topics in Plant Virology

Abstract

Geminiviruses are a group of single-stranded DNA viruses that infect a broad range of crops and cause extensive losses worldwide. Their small, circular DNA genomes have limited coding capacities for 5–7 proteins. Consequently, essential life cycles of geminiviruses have to be supported by geminivirus-encoded proteins together with host factors. Recent findings have contributed significantly towards our understanding of the mechanisms for how a productive infection is established. This chapter offers a brief description of the biological functions of the viral proteins. The host factors involved in reprogramming plant cellular processes are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ach RA, Durfee T, Miller AB et al (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin I, Hussain K, Akbergenov R et al (2011a) Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Mol Plant Microbe Interact 24:973–983

    Article  CAS  PubMed  Google Scholar 

  • Amin I, Patil BL, Briddon RW et al (2011b) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagewadi B, Chen S, Lal SK et al (2004) PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. J Virol 78:11890–11903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Ziv A, Levy Y, Hak H et al (2012) The tomato yellow leaf curl virus (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1. Plant Signal Behav 7:983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Ziv A, Levy Y, Citovsky V et al (2015) The tomato yellow leaf curl virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. Biochem Biophys Res Commun 460:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Watts J, Markham PG et al (1989) The coat protein of beet curly top virus is essential for infectivity. Virology 172:628–633

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Mansoor S, Bedford ID et al (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Bull SE, Amin I et al (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNAβ complexes. Virology 324:462–474

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Zerbini FM, Navas-Castillo J et al (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619

    Article  CAS  PubMed  Google Scholar 

  • Caracuel Z, Lozano-Duran R, Huguet S et al (2012) C2 from beet curly top virus promotes a cell environment suitable for efficient replication of geminiviruses, providing a novel mechanism of viral synergism. New Phytol 194:846–858

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MF, Lazarowitz SG (2004) Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity. J Virol 78:11161–11171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho CM, Fontenelle MR, Florentino LH et al (2008) A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. Plant J 55:869–880

    Article  CAS  PubMed  Google Scholar 

  • Castillo AG, Collinet D, Deret S et al (2003) Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312:381–394

    Article  CAS  PubMed  Google Scholar 

  • Castillo AG, Kong LJ, Hanley-Bowdoin L et al (2004) Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol 78:2758–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Gonzalez C, Liu X, Huang C et al (2015) Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. elife 4:e06671

    Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A 102:10381–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowda-Reddy RV, Achenjang F, Felton C et al (2008) Role of a geminivirus AV2 protein putative protein kinase C motif on subcellular localization and pathogenicity. Virus Res 135:115–124

    Article  CAS  PubMed  Google Scholar 

  • Cui XF, Tao XR, Xie Y et al (2004) A DNAβ associated with tomato yellow leaf curl China virus is required for symptom induction. J Virol 78:13966–13974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XF, Li GX, Wang DW et al (2005) A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deom CM, Mills-Lujan K (2015) Towards understanding the molecular mechanism of a geminivirus C4 Protein. Plant Signal Behav 10:e1109758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eini O, Dogra S, Selth LA et al (2009) Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNAβ satellite. Mol Plant Microbe Interact 22:737–746

    Article  CAS  PubMed  Google Scholar 

  • Florentino LH, Santos AA, Fontenelle MR et al (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80:6648–6656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649

    Article  CAS  PubMed  Google Scholar 

  • Fontenelle MR, Luz DF, Gomes AP et al (2007) Functional analysis of the naturally recombinant DNA-A of the bipartite begomovirus tomato chlorotic mottle virus. Virus Res 126:262–267

    Article  CAS  PubMed  Google Scholar 

  • Fontes EP, Santos AA, Luz DF et al (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Gene Dev 18:2545–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbertson RL, Sudarshana M, Jiang H et al (2003) Limitations on geminivirus genome size imposed by plasmodesmata and virus-encoded movement protein: insights into DNA trafficking. Plant Cell 15:2578–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick E, Zrachya A, Levy Y et al (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 105:157–161

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Moshe A, Ghanim M et al (2013) Recruitment of the host plant heat shock protein 70 by tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8:e70280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotz M, Popovski S, Kollenberg M et al (2012) Implication of Bemisia tabaci heat shock protein 70 in begomovirus-whitefly interactions. J Virol 86:13241–13252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerra-Peraza O, Kirk D, Seltzer V et al (2005) Coat proteins of rice tungro bacilliform virus and mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha. J Gen Virol 86:1815–1826

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56:313–329

    Article  CAS  PubMed  Google Scholar 

  • Hak H, Levy Y, Chandran SA et al (2015) TYLCV-Is movement in planta does not require V2 protein. Virology 477:56–60

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM et al (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105–140

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Bejarano ER, Robertson D et al (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Wang H, Sunter G et al (2003) Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hehnle S, Wege C, Jeske H (2004) Interaction of DNA with the movement proteins of geminiviruses revisited. J Virol 78:7698–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeske H (2009) Geminiviruses. Curr Top Microbiol Immunol 331:185–226

    CAS  PubMed  Google Scholar 

  • Jiu M, Zhou XP, Tong L et al (2007) Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS One 2:e182

    Google Scholar 

  • Kaliappan K, Choudhury NR, Suyal G et al (2012) A novel role for RAD54: this host protein modulates geminiviral DNA replication. Faseb J 26:1142–1160

    Article  CAS  PubMed  Google Scholar 

  • Kheyr-Pour A, Bananej K, Dafalla GA et al (2000) Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90:629–635

    Article  CAS  PubMed  Google Scholar 

  • Kon T, Rojas MR, Abdourhamane IK et al (2009) Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J Gen Virol 90:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Kong LJ, Orozco BM, Roe JL et al (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krenz B, Windeisen V, Wege C et al (2010) A plastid-targeted heat shock cognate 70 kDa protein interacts with the abutilon mosaic virus movement protein. Virology 401:6–17

    Article  CAS  PubMed  Google Scholar 

  • Krenz B, Deuschle K, Deigner T et al (2015) Early function of the abutilon mosaic virus AC2 gene as a replication brake. J Virol 89:3683–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Kumar J, Singh SP et al (2014) Association of satellites with a mastrevirus in natural infection: complexity of wheat dwarf India virus disease. J Virol 88:7093–7104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Mishra SK, Rahman J et al (2015) Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology 486:158–172

    Article  CAS  PubMed  Google Scholar 

  • Kunik T, Palanichelvam K, Czosnek H et al (1998) Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J 13:393–399

    Article  CAS  PubMed  Google Scholar 

  • Kunik T, Mizrachy L, Citovsky V et al (1999) Characterization of a tomato karyopherin alpha that interacts with the tomato yellow leaf curl virus (TYLCV) capsid protein. J Exp Bot 50:731–732

    CAS  Google Scholar 

  • Lacatus G, Sunter G (2009) The Arabidopsis PEAPOD2 transcription factor interacts with geminivirus AL2 protein and the coat protein promoter. Virology 392:196–202

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Chen H, Teng K et al (2009) RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J 57:905–917

    Article  CAS  PubMed  Google Scholar 

  • Latham JR, Saunders K, Pinner MS et al (1997) Induction of plant cell division by beet curly top virus gene C4. Plant J 11:1273–1283

    Article  CAS  Google Scholar 

  • Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A 107:2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Huang C, Li Z et al (2014a) Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10:e1003921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li R, Weldegergis BT, Li J et al (2014b) Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Xu X, Huang C et al (2015) The AC5 protein encoded by mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. New Phytol 208:555–569

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Boulton MI, Davies JW (1997) Maize streak virus coat protein binds single- and double-stranded DNA in vitro. J Gen Virol 78:1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Duran R, Rosas-Diaz T, Gusmaroli G et al (2011) Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23:1014–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Duran R, Caracuel Z, Bejarano ER (2012) C2 from beet curly top virus meddles with the cell cycle: a novel function for an old pathogenicity factor. Plant Signal Behav 7:1705–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan JB, Yao DM, Zhang T et al (2013) Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett 16:390–398

    Article  PubMed  Google Scholar 

  • Luque A, Sanz-Burgos AP, Ramirez-Parra E et al (2002) Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302:83–94

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo TA, Kon T, Rojas MR et al (2013) Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87:5397–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills-Lujan K, Andrews DL, Chou CW et al (2015) The roles of phosphorylation and SHAGGY-like protein kinases in geminivirus C4 protein induced hyperplasia. PLoS One 10:e0122356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morin S, Ghanim M, Zeidan M et al (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256:75–84

    Article  CAS  PubMed  Google Scholar 

  • Morin S, Ghanim M, Sobol I et al (2000) The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276:404–416

    Article  CAS  PubMed  Google Scholar 

  • Mubin M, Amin I, Amrao L et al (2010) The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. Mol Plant Pathol 11:245–254

    Article  CAS  PubMed  Google Scholar 

  • Nawaz-Ul-Rehman MS, Nahid N, Mansoor S et al (2010) Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405:300–308

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1996) The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224:390–404

    Article  CAS  PubMed  Google Scholar 

  • Park J, Hwang HS, Buckley KJ et al (2010) C4 protein of beet severe curly top virus is a pathomorphogenetic factor in Arabidopsis. Plant Cell Rep 29:1377–1389

    Article  CAS  PubMed  Google Scholar 

  • Pasumarthy KK, Choudhury NR, Mukherjee SK (2010) Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1). Virol J 7:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piroux N, Saunders K, Page A et al (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology 362:428–440

    Article  CAS  PubMed  Google Scholar 

  • Poornima Priyadarshini CG, Ambika MV, Tippeswamy R et al (2011) Functional characterization of coat protein and V2 involved in cell to cell movement of cotton leaf curl Kokhran virus-Dabawali. PLoS One 6:e26929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qazi J, Amin I, Mansoor S et al (2007) Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res 128:135–139

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V, Malik PS, Choudhury NR et al (2004) The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 78:2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana VS, Singh ST, Priya NG et al (2012) Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS One 7:e42168

    Google Scholar 

  • Rigden JE, Dry IB, Mullineaux PM et al (1993) Mutagenesis of the virion-sense open reading frames of tomato leaf curl geminivirus. Virology 193:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A et al (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Noueiry AO, Lucas WJ et al (1998) Bean dwarf mosaic geminivirus movement proteins recognize DNA in a form-and size-specific manner. Cell 95:105–113

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Jiang H, Salati R et al (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291:110–125

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ et al (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Behjatnia SA, Mansoor S et al (2005) A single complementary-sense transcript of a geminiviral DNAβ satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18:7–14

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Zafar Y, Randles JW et al (2007) A monopartite begomovirus-associated DNAβ satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 88:2881–2889

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Duran MA, Dallas MB, Ascencio-Ibanez JT et al (2011) Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol 85:9789–9800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AA, Carvalho CM, Florentino LH et al (2009) Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS One 4:e5781–e5781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos AA, Lopes KV, Apfata JA et al (2010) NSP-interacting kinase, NIK: a transducer of plant defence signalling. J Exp Bot 61:3839–3845

    Article  CAS  PubMed  Google Scholar 

  • Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152

    Article  CAS  PubMed  Google Scholar 

  • Saunders K, Bedford ID, Briddon RW et al (2000) A unique virus complex causes ageratum yellow vein disease. Proc Natl Acad Sci U S A 97:6890–6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders K, Norman A, Gucciardo S et al (2004) The DNAβ satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324:37–47

    Article  CAS  PubMed  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS et al (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settlage SB, Miller AB, Gruissem W et al (2001) Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator. Virology 279:570–576

    Article  CAS  PubMed  Google Scholar 

  • Settlage SB, See RG, Hanley-Bowdoin L (2005) Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 79:9885–9895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Ikegami M (2010) Tomato leaf curl Java virus V2 protein is a determinant of virulence, hypersensitive response and suppression of post-transcriptional gene silencing. Virology 396:85–93

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Ikegami M, Kon T (2010) Identification of the virulence factors and suppressors of post-transcriptional gene silencing encoded by ageratum yellow vein virus, a monopartite begomovirus. Virus Res 149:19–27

    Article  CAS  PubMed  Google Scholar 

  • Singh DK, Islam MN, Choudhury NR et al (2007) The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res 35:755–770

    Article  CAS  PubMed  Google Scholar 

  • Soitamo AJ, Jada B, Lehto K (2012) Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biol 12:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YW, Tee CS, Ma YH et al (2015) Attenuation of histone methyltransferase KRYPTONITE-mediated transcriptional gene silencing by geminivirus. Sci Rep 5:16476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunitha S, Shanmugapriya G, Balamani V et al (2013) Mungbean yellow mosaic virus (MYMV) AC4 suppresses post-transcriptional gene silencing and an AC4 hairpin RNA gene reduces MYMV DNA accumulation in transgenic tobacco. Virus Genes 46:496–504

    Article  CAS  PubMed  Google Scholar 

  • Suyal G, Mukherjee SK, Choudhury NR (2013) The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 158:1931–1941

    Article  CAS  PubMed  Google Scholar 

  • Teng K, Chen H, Lai J et al (2010) Involvement of C4 protein of beet severe curly top virus (family Geminiviridae) in virus movement. PLoS One 5:e11280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV et al (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS et al (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of post-transcriptional gene silencing. J Virol 78:9487–9498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varsani A, Navas-Castillo J, Moriones E et al (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159:2193–2203

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hao LH, Shung CY et al (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li FF, Huang CJ et al (2014) V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol 95:225–230

    Article  CAS  PubMed  Google Scholar 

  • Wu PJ, Zhou XP (2005) Interaction between a nanovirus-like component and the tobacco curly shoot virus/satellite complex. Acta Bioch Bioph Sin 37:25–31

    Article  CAS  Google Scholar 

  • Xie Q, SanzBurgos P, Hannon GJ et al (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J 15:4900–4908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Wu P, Liu P et al (2010) Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virol J 7:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zhao LL, Jiao XY et al (2013) A recombinant begomovirus resulting from exchange of the C4 gene. J Gen Virol 94:1896–1907

    Article  CAS  PubMed  Google Scholar 

  • Yang JY, Iwasaki M, Machida C et al (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Gene Dev 22:2564–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XL, Xie Y, Raja P et al (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7:e1002329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong Chung H, Lacatus G, Sunter G (2014) Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460–461:108–118

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZH, Chen H, Huang XH et al (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Dong JY, Xu Y et al (2012a) V2 protein encoded by tomato yellow leaf curl China virus is an RNA silencing suppressor. Virus Res 163:51–58

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Luan JB, Qi JF et al (2012b) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21:1294–1304

    Article  PubMed  Google Scholar 

  • Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Rojas MR, Park M-R et al (2011) Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol 85:11821–11832

    Article  PubMed  PubMed Central  Google Scholar 

  • Zrachya A, Glick E, Levy Y et al (2007) Suppressor of RNA silencing encoded by tomato yellow leaf curl virus-Israel. Virology 358:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research projects in our laboratory are supported by the National Natural Science Foundation of China (31390422) and the National Key Basic Research and Development Program of China (2012CB114004). The authors apologize to all investigators whose research is not cited in this chapter owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuling Yang or Xueping Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, X., Wang, B., Li, F., Yang, Q., Zhou, X. (2016). Research Advances in Geminiviruses. In: Wang, A., Zhou, X. (eds) Current Research Topics in Plant Virology. Springer, Cham. https://doi.org/10.1007/978-3-319-32919-2_11

Download citation

Publish with us

Policies and ethics