Skip to main content

Preservation of Fertility in Gynecological Malignancies

  • Chapter
  • First Online:
  • 765 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Survival rate of reproductive aged women with gynecologic cancer has steadily been improving. As cancer therapy and cancers themselves may carry the risk of infertility and many of these young female cancer patients did not complete their family planning yet at the time of cancer diagnosis, fertility preservation has an emerging importance. Oncofertility is a rising concept requiring the contributions of both gynecologic oncology and reproductive medicine. All patients should be adequately informed at the time of diagnosis about the risk of infertility and the available methods for fertility preservation so they will have maximal chance to make an optimal decision without any significant impact and delay in oncologic outcome. The current treatment options for gynecologic malignancies include a wide variety of cytotoxic chemotherapy, different radiation treatments, multiple surgeries and anti-estrogen therapy, or any combination of these. Although these therapies can significantly reduce mortality, it can cause long-term toxicity, such as induction of an early menopause and fertility impairment even when the ovaries and the uterus left in place. At the present time, there are several potential options available including both standard and experimental assisted technologies. Embryo and sperm banking are the standard methods but many experts also count oocyte cryopreservation as a standard technique. Ovarian tissue harvesting, cryopreservation, and transplantation are safe but still believed as experimental as their utilization is still limited and their true value needs to be determined. Several pioneering procedures are being actively investigated, including uterus transplantation and in vitro follicle maturation, which may magnify the number of fertility preservation options for young cancer patients in the future. It is with great importance to start to discuss fertility preservation options even in the gynecologic oncologist’s office and initiate the referral to fertility specialists immediately. The application of structured psychosocial supportive care also helps these patients through of this demanding time. In this chapter, the current data and concepts regarding fertility preservation of female patients with gynecological malignancies are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dursun P, Dogan NU, Ayhan A. Oncofertility for gynecologic and non-gynecologic cancers: fertility sparing in young women of reproductive age. Clin Rev Oncol Hematol. 2014;92:258–67.

    Article  Google Scholar 

  2. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. Cancer J Clin. 2011;61:409–18.

    Article  Google Scholar 

  3. Gondos A, Hiripi E, Holleczek B, et al. Survival among adolescents and young adults with cancer in Germany and the United States: an international comparison. Int J Cancer. 2013;133:2207e15.

    Article  CAS  Google Scholar 

  4. Cooke A, Mills TA, Lavender T. ’Informed and uninformed decision making’ – women’s reasoning, experiences and perceptions with regard to advanced maternal age and delayed childbearing: a meta-synthesis. Int J Nurs Stud. 2010;47:1317–29.

    Article  PubMed  Google Scholar 

  5. Schover LR. Patient attitudes toward fertility preservation. Pediatr Blood Cancer. 2009;53:281e4.

    Article  Google Scholar 

  6. Gardino SL, Russell AE, Woodruff TK. Adoption after cancer: adoption agency attitudes and perspectives on the potential to parent post-cancer. Cancer Treat Res. 2010;156:153e70.

    Google Scholar 

  7. Magelssen H, Melve KK, Skjaerven R, et al. Parenthood probability and pregnancy outcome in patients with a cancer diagnosis during adolescence and young adulthood. Hum Reprod. 2008;23:178e86.

    Google Scholar 

  8. Kim SS. Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril. 2006;85:1e11.

    Google Scholar 

  9. Forman EJ, Anders CK, Behera MA. A nationwide survey of oncologists regarding treatment-related infertility and fertility preservation in female cancer patients. Fertil Steril. 2010;94(5):1652–6.

    Article  PubMed  Google Scholar 

  10. Woodruff TK. The oncofertility consortium—addressing fertility in young people with cancer. Nat Rev Clin Oncol. 2010;7(8):466–75.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Soares SR, Melo MA. Cigarette smoking and reproductive function. Curr Opin Obstet Gynecol. 2008;20(3):281–91.

    Article  PubMed  Google Scholar 

  12. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24(18):2917–31.

    Article  PubMed  Google Scholar 

  13. Duncan FE, Jozefik JK, Kim AM, Hirshfeld-Cytron J, Woodruff TK. The gynecologist has a unique role in providing oncofertility care to young cancer patients. US Obstet Gynecol. 2011;6(1):24–34.

    PubMed  PubMed Central  Google Scholar 

  14. Faddy MJ, Gosden RG, Gougeon A, et al. Accelerated disappearance of ovarian follicles in midlife: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.

    CAS  PubMed  Google Scholar 

  15. Bath LE, Wallace WHB, Critchley HOD. Late effects of the treatment of childhood cancer on the female reproductive system and the potential for fertility preservation. BJOG. 2002;109:107–14.

    Article  PubMed  Google Scholar 

  16. Critchley HO. Factors of importance for implantation and problems after treatment for childhood cancer. Med Pediatr Oncol. 1999;33:9–14.

    Article  CAS  PubMed  Google Scholar 

  17. Wallace WH, Shalet SM, Hendry JH, Morris-Jones PH, Gattamaneni HR. Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol. 1989;62(743):995–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wallace WH, Thomson AB, Saran F, Kelsey TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62(3):738–44.

    Article  PubMed  Google Scholar 

  19. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6):535–43.

    Article  CAS  PubMed  Google Scholar 

  20. Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101 Suppl 2:109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wallace WHB, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.

    Article  CAS  PubMed  Google Scholar 

  22. Langan RC, Prieto PA, Sherry RM, Zlott D, Wunderlich J, Csako G, Costello R, White DE, Rosenberg SA, Yang JC. Assessment of ovarian function after preparative chemotherapy and total body radiation for adoptive cell therapy. J Immunother. 2011;34(4):397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Critchley HO, Bath LE, Wallace WH. Radiation damage to the uterus – review of the effects of treatment of childhood cancer. Hum Fertil (Camb). 2002;5:61–6.

    Article  Google Scholar 

  24. Agha A, Sherlock M, Brennan S, et al. Hypothalamic-pituitary dysfunction after irradiation of nonpituitary brain tumors in adults. J Clin Endocrinol Metab. 2005;90:6355–60.

    Article  CAS  PubMed  Google Scholar 

  25. Constine LS, Woolf PD, Cann D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328:87–94.

    Article  CAS  PubMed  Google Scholar 

  26. Rose SR, Schreiber RE, Kearney NS, et al. Hypothalamic dysfunction after chemotherapy. J Pediatr Endocrinol Metab. 2004;17:55–66.

    Article  PubMed  Google Scholar 

  27. Reynaud K, Driancourt MA. Oocyte attrition. Mol Cell Endocrinol. 2000;163(1-2):101–8.

    Article  CAS  PubMed  Google Scholar 

  28. Meirow D, Biederman H, Anderson RA, Wallace WH. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol. 2010;53(4):727–39.

    Article  PubMed  Google Scholar 

  29. Meirow D. Reproduction post-chemotherapy in young cancer patients. Mol Cell Endocrinol. 2000;169(1-2):123–31.

    Article  CAS  PubMed  Google Scholar 

  30. Nicosia SV, Matus-Ridley M, Meadows AT. Gonadal effects of cancer therapy in girls. Cancer. 1985;55(10):2364–72.

    Article  CAS  PubMed  Google Scholar 

  31. Soleimani R, De Sutter P. In situ identification of follicles in ovarian cortex as a tool for quantifying follicle density, viability and developmental potential in strategies to preserve female fertility. Hum Reprod. 2011;26(4):955–6.

    Article  PubMed  Google Scholar 

  32. Lopes F, Smith R, Anderson RA, Spears N. Docetaxel induces moderate ovarian toxicity in mice, primarily affecting granulosa cells of early growing follicles. Mol Hum Reprod. 2014;20(10):948–59.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res. 2007;67(21):10159–62.

    Article  CAS  PubMed  Google Scholar 

  34. Raz A, Fisch B, Okon E, Feldberg D, Nitke S, Raanani H, Abir R. Possible direct cytotoxicity effects of cyclophosphamide on cultured human follicles: an electron microscopy study. J Assist Reprod Genet. 2002;19(10):500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meng Y, Xu Z, Wu F, Chen W, Xie S, Liu J, Huang X, Zhou Y. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. Fertil Steril. 2014;102(3):871–7.

    Article  CAS  PubMed  Google Scholar 

  36. Li F, Turan V, Lierman S, Cuvelier C, De Sutter P, Oktay K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  37. Roti Roti EC, Leisman SK, Abbott DH, Salih SM. Acute doxorubicin insult in the mouse ovary is cell- and follicle-type dependent. PLoS One. 2012;7(8), e42293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bar-Joseph H, Ben-Aharon I, Rizel S, Stemmer SM, Tzabari M, Shalgi R. Doxorubicin-induced apoptosis in germinal vesicle (GV) oocytes. Reprod Toxicol. 2010;30(4):566–72.

    Article  CAS  PubMed  Google Scholar 

  39. Meirow D, Dor J, Kaufman B, Shrim A, Rabinovici J, Schiff E, Raanani H, Levron J, Fridman E. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 2007;22(6):1626–33.

    Article  CAS  PubMed  Google Scholar 

  40. Oktem O, Oktay K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007;110(10):2222–9.

    Article  CAS  PubMed  Google Scholar 

  41. Abir R, Ben-Haroush A, Felz C, Okon E, Raanani H, Orvieto R, Nitke S, Fisch B. Selection of patients before and after anticancer treatment for ovarian cryopreservation. Hum Reprod. 2008;23(4):869–77.

    Article  CAS  PubMed  Google Scholar 

  42. Waxman J. Chemotherapy and the adult gonad: a review. J R Soc Med. 1983;76(2):144–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Koyama H, Wada T, Nishizawa Y, Iwanaga T, Aoki Y. Cyclophosphamide-induced ovarian failure and its therapeutic significance in patients with breast cancer. Cancer. 1977;39(4):1403–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kurt M, Uncu G, Cetintas SK, Kucuk N, Guler S, Ozkan L. Successful spontaneous pregnancy in a patient with rectal carcinoma treated with pelvic radiotherapy and concurrent chemotherapy: the unique role of laparoscopic lateral ovary transposition. Eur J Gynaecol Oncol. 2007;28(5):408–10.

    CAS  PubMed  Google Scholar 

  45. Sonoda Y, Abu-Rustum NR, Gemignani ML, Chi DS, Brown CL, Poynor EA, et al. A fertility-sparing alternative to radical hysterectomy: how many patients may be eligible? Gynecol Oncol. 2004;95(3):534–8.

    Article  PubMed  Google Scholar 

  46. Thomas PR, Winstanly D, Peckham MJ, Austin DE, Murray MA, Jacobs HS. Reproductive and endocrine function in patients with Hodgkin's disease: effects of oophoropexy and irradiation. Br J Cancer. 1976;33(2):226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bisharah M, Tulandi T. Laparoscopic preservation of ovarian function: an underused procedure. Am J Obstet Gynecol. 2003;188(2):367–70.

    Article  PubMed  Google Scholar 

  48. Sonmezer M, Oktay K. Fertility preservation in female patients. Hum Reprod Update. 2004;10(3):251–66.

    Article  PubMed  Google Scholar 

  49. Nakagawa K, Kanda Y, Yamashita H, Hosoi Y, Oshima K, Ohtomo K, Ban N, Yamakawa S, Nakagawa S, Chiba S. Preservation of ovarian function by ovarian shielding when undergoing total body irradiation for hematopoietic stem cell transplantation: a report of two successful cases. Bone Marrow Transplant. 2006;37(6):583–7.

    Article  CAS  PubMed  Google Scholar 

  50. Oktay K, Sonmezer M. Fertility issues and options in young women with cancer. Recent Results Cancer Res. 2008;178:203–24.

    Article  CAS  PubMed  Google Scholar 

  51. Dursun P, LeBlanc E, Nogueira MC. Radical vaginal trachelectomy (Dargent’s operation): a critical review of the literature. Eur J Surg Oncol. 2007;33(8):933–41.

    Article  CAS  PubMed  Google Scholar 

  52. Klemm P, Tozzi R, Kohler C, Hertel H, Schneider A. Does radical trachelectomy influence uterine blood supply? Gynecol Oncol. 2005;96(2):283–6.

    Article  PubMed  Google Scholar 

  53. Lanowska M, Mangler M, Spek A, Grittner U, Hasenbein K, Chi-antera V, et al. Radical vaginal trachelectomy (RVT) combined with laparoscopic lymphadenectomy: prospective study of 225 patients with early-stage cervical cancer. Int J Gynecol Cancer. 2011;21(8):1458–64.

    Article  PubMed  Google Scholar 

  54. Mangler M, Speiser D, Nguyen BD, Cremer M, Koehler C, Schneider A, et al. Neonatal outcome in infants of patients with radical vaginal trachelectomy. J Perinat Med. 2012;40(5):503–9.

    Article  PubMed  Google Scholar 

  55. Oktay K, Aydin BA, Karlikaya G. A technique for laparoscopic transplantation of frozen-banked ovarian tissue. Fertil Steril. 2001;75(6):1212–6.

    Article  CAS  PubMed  Google Scholar 

  56. Practice Committee of the American Society for Reproductive. Ovarian tissue and oocyte cryopreservation. Fertil Steril. 2004;82(4):993–8.

    Article  Google Scholar 

  57. Simon B, Lee SJ, Partridge AH, et al. Preserving fertility after cancer. CA Cancer J Clin. 2005;55:211–28.

    Article  PubMed  Google Scholar 

  58. Marhhom E, Cohen I. Fertility preservation options for women with malignancies. Obstet Gynecol Surv. 2007;62:58–72.

    Article  PubMed  Google Scholar 

  59. Newton H, Aubard Y, Rutherford A, et al. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11:1487–91.

    Article  CAS  PubMed  Google Scholar 

  60. Seli E, Tangir J. Fertility preservation options for female patients with malignancies. Curr Opin Obstet Gynecol. 2005;17:299–308.

    Article  PubMed  Google Scholar 

  61. Oktay K, Newton H, Aubard Y, et al. Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology? Fertil Steril. 1998;69:1–7.

    Article  CAS  PubMed  Google Scholar 

  62. Maltaris T, Dimmler A, Muller A, et al. Comparison of two freezing protocols in an open freezing system for cryopreservation of rat ovarian tissue. J Obstet Gynaecol Res. 2006;32:273–9.

    Article  PubMed  Google Scholar 

  63. Gook DA, Edgar DH, Borg J, et al. Diagnostic assessment of the developmental potential of human cryopreserved ovarian tissue from multiple patients using xenografting. Hum Reprod. 2005;20:72–8.

    Article  PubMed  Google Scholar 

  64. Chian RC, Gilbert L, Huang JY, Demirtas E, Holzer H, Benjamin A, et al. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009;91(2):372–6.

    Article  CAS  PubMed  Google Scholar 

  65. Chian RC, Uzelac PS, Nargund G. In vitro maturation of human immature oocytes for fertility preservation. Fertil Steril. 2013;99(5):1173–81.

    Article  CAS  PubMed  Google Scholar 

  66. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med. 2011;43(6):437–50.

    Article  PubMed  Google Scholar 

  67. Donnez J, Dolmans MM, Demylle D, et al. Live birth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  CAS  PubMed  Google Scholar 

  68. Meirow D, Levron J, Eldar-Geva T, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;53:318–21.

    Article  Google Scholar 

  69. Lee DM, Yeoman RR, Battaglia DE, et al. Live birth after ovarian tissue transplant. Nature. 2004;428:137–8.

    Article  CAS  PubMed  Google Scholar 

  70. Oktay K, Buyuk E, Veeck L, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;363:837–40.

    Article  PubMed  Google Scholar 

  71. Wolner-Hanssen P, Hagglund L, Ploman F, et al. Autotransplantation of cryopreserved ovarian tissue to the right forearm 4(1/2) years after autologous stem cell transplantation. Acta Obstet Gynecol Scand. 2005;84:695–8.

    PubMed  Google Scholar 

  72. Silber SJ, Lenahan KM, Levine DJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353:58–63.

    Article  CAS  PubMed  Google Scholar 

  73. Nomi M, Atala A, Coppi PD, et al. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23:463–83.

    Article  CAS  PubMed  Google Scholar 

  74. Shaw JM, Bowles J, Koopman P, et al. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996;11:1668–73.

    Article  CAS  PubMed  Google Scholar 

  75. Donnez J, Dolmans MM, Martinez-Madrid B, et al. The role of cryopreservation for women prior to treatment of malignancy. Curr Opin Obstet Gynecol. 2005;17:333–8.

    Article  PubMed  Google Scholar 

  76. Abir R, Nitke S, Ben-Haroush A, et al. In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation. Histol Histopathol. 2006;21:887–98.

    CAS  PubMed  Google Scholar 

  77. Scott JE, Zhang P, Hovatta O. Benefits of 8-bromo-guanosine 3′,5′-cyclic monophosphate (8-brcGMP) in human ovarian cortical tissue culture. Reprod Biomed Online. 2004;8:319–24.

    Article  CAS  PubMed  Google Scholar 

  78. Scott JE, Carlsson IB, Bavister BD, et al. Human ovarian tissue cultures: extracellular matrix composition, coating density, and tissue dimensions. Reprod Biomed Online. 2004;9:287–93.

    Article  CAS  PubMed  Google Scholar 

  79. Wright CS, Hovatta O, Margara R, et al. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999;14:1555–62.

    Article  CAS  PubMed  Google Scholar 

  80. Hovatta O, Silye R, Abir R, et al. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12:1032–6.

    Article  CAS  PubMed  Google Scholar 

  81. Falcone T, Attaran M, Bedaiwy MA, Goldberg JM. Ovarian function preservation in the cancer patient. Fertil Steril. 2004;81(2):243–57.

    Article  PubMed  Google Scholar 

  82. Brännström M, Johannesson L, Bokström H, Kvarnström N, Mölne J, Dahm-Kähler P, Enskog A, Milenkovic M, Ekberg J, Diaz-Garcia C, Gäbel M, Hanafy A, Hagberg H, Olausson M, Nilsson L. Live birth after uterus transplantation. Lancet. 2014;S0140–6736(14):61728–31.

    Google Scholar 

  83. Imai A, Furui T. Chemotherapy-induced female infertility and protective action of gonadotropin-releasing hormone analogues. J Obstet Gynaecol. 2007;27(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  84. Longhi A, Pignotti E, Versari M, Asta S, Bacci G. Effect of oral contraceptive on ovarian function in young females undergoing neoadjuvant chemotherapy treatment for osteosarcoma. Oncol Rep. 2003;10(1):151–5.

    PubMed  Google Scholar 

  85. Blumenfeld Z, Von Wolff M. GnRH-analogues and oral contraceptives for fertility preservation in women during chemotherapy. Hum Reprod Update. 2008;14(6):543–52.

    Article  CAS  PubMed  Google Scholar 

  86. Reinsch RC, Murphy AA, Morales AJ, Yen SS. The effects of RU 486 and leuprolide acetate on uterine artery blood flow in the fibroid uterus: a prospective, randomized study. Am J Obstet Gynecol. 1994;170(6):1623–7.

    Article  CAS  PubMed  Google Scholar 

  87. Periti P, Mazzei T, Mini E. Clinical pharmacokinetics of depot leuprorelin. Clin Pharmacokinet. 2002;41(7):485–504.

    Article  CAS  PubMed  Google Scholar 

  88. Yavas G, Dogan NU, Yavas C, Benzer N, Yuce D, Celik C. Prospec-tive assessment of quality of life and psychological distress in patients with gynecologic malignancy: a 1-year prospective study. Int J Gynecol Cancer. 2012;22(6):1096–101.

    Article  PubMed  Google Scholar 

  89. Munster PN, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol. 2012;30(5):533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Navarria I, Usel M, Rapiti E, Neyroud-Caspar I, Pelte MF, Bouchardy C, et al. Young patients with endometrial cancer: how many could be eligible for fertility-sparing treatment? Gynecol Oncol. 2009;114(3):448–51.

    Article  PubMed  Google Scholar 

  91. Waxman JH, Ahmed R, Smith D, Wrigley PF, Gregory W, Shalet S, Crowther D, Rees LH, Besser GM, Malpas JS, et al. Failure to preserve fertility in patients with Hodgkin's disease. Cancer Chemother Pharmacol. 1987;19(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  92. Blumenfeld Z, Avivi I, Eckman A, Epelbaum R, Rowe JM, Dann EJ. Gonadotropin-releasing hormone agonist decreases chemotherapy-induced gonadotoxicity and premature ovarian failure in young female patients with Hodgkin lymphoma. Fertil Steril. 2008;89(1):166–73.

    Article  CAS  PubMed  Google Scholar 

  93. Clowse ME, Behera MA, Anders CK, Copland S, Coffman CJ, Leppert PC, Bastian LA. Ovarian preservation by GnRH agonists during chemotherapy: a meta-analysis. J Womens Health (Larchmt). 2009;18(3):311–9.

    Article  Google Scholar 

  94. Sherman JK. Synopsis of the use of frozen human semen since 1964: state of the art of human semen banking. Fertil Steril. 1973;24(5):397–412.

    Article  CAS  PubMed  Google Scholar 

  95. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305(5936):707–9.

    Article  CAS  PubMed  Google Scholar 

  96. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984;42(2):293–6.

    Article  CAS  PubMed  Google Scholar 

  97. Quintero RB, Helmer A, Huang JQ, Westphal LM. Ovarian stimulation for fertility preservation in patients with cancer. Fertil Steril. 2010;93(3):865–8.

    Article  CAS  PubMed  Google Scholar 

  98. Friedler S, Koc O, Gidoni Y, Raziel A, Ron-El R. Ovarian response to stimulation for fertility preservation in women with malignant disease: a systematic review and meta-analysis. Fertil Steril. 2012;97(1):125–33.

    Article  PubMed  Google Scholar 

  99. Baynosa J, Westphal LM, Madrigrano A, Wapnir I. Timing of breast cancer treatments with oocyte retrieval and embryo cryopreservation. J Am Coll Surg. 2009;209(5):603–7.

    Article  PubMed  Google Scholar 

  100. Stern CJ, Toledo MG, Gook DA Seymour JF. Fertility preservation in female oncology patients. Aust N Z J Obstet Gynaecol. 2006;46(1):15–23.

    Article  PubMed  Google Scholar 

  101. Kim J, Oktay K, Gracia C, Lee S, Morse C, Mersereau JE. Which patients pursue fertility preservation treatments? A multicenter analysis of the predictors of fertility preservation in women with breast cancer. Fertil Steril. 2012;97(3):671–6.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee S, Oktay K. Does higher starting dose of FSH stimulation with letrozole improve fertility preservation outcomes in women with breast cancer? Fertil Steril. 2012;98(4):961–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reddy J, Oktay K. Ovarian stimulation and fertility preservation with the use of aromatase inhibitors in women with breast cancer. Fertil Steril. 2012;98(6):1363–9.

    Article  CAS  PubMed  Google Scholar 

  104. Chen C. Pregnancy after human oocyte cryopreservation. Lancet. 1986;1(8486):884–6.

    Article  CAS  PubMed  Google Scholar 

  105. Pickering SJ, Johnson MH. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod. 1987;2(3):207–16.

    CAS  PubMed  Google Scholar 

  106. Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction. 2011;141(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  107. Stachecki JJ, Cohen J. An overview of oocyte cryopreservation. Reprod Biomed Online. 2004;9(2):152–63.

    Article  PubMed  Google Scholar 

  108. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  PubMed  Google Scholar 

  109. Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod. 2001;16(3):411–6.

    Article  CAS  PubMed  Google Scholar 

  110. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the cryotop method. Theriogenology. 2007;67(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  111. Harp R, Leibach J, Black J, Keldahl C, Karow A. Cryopreservation of murine ovarian tissue. Cryobiology. 1994;31(4):336–43.

    Article  CAS  PubMed  Google Scholar 

  112. Revelli A, Molinari E, Salvagno F, Delle Piane L, Dolfin E, Ochetti S. Oocyte cryostorage to preserve fertility in oncological patients. Obstet Gynecol Int. 2012;2012:525896. doi:10.1155/2012/525896. Epub 2012 Jan 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18(6):769–76.

    Article  CAS  PubMed  Google Scholar 

  114. Rudick B, Opper N, Paulson R, Bendikson K, Chung K. The status of oocyte cryopreservation in the United States. Fertil Steril. 2010;94(7):2642–6.

    Article  PubMed  Google Scholar 

  115. Gomes JE, Correia SC, Gouveia-Oliveira A, Cidadao AJ, Plancha CE. Three-dimensional environments preserve extracellular matrix compartments of ovarian follicles and increase FSH-dependent growth. Mol Reprod Dev. 1999;54(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  116. West ER, Shea LD, Woodruff TK. Engineering the follicle microenvironment. Semin Reprod Med. 2007;25:287–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pangas SA, Saudye H, Shea LD, et al. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng. 2003;9:1013–21.

    Article  CAS  PubMed  Google Scholar 

  118. Xu M, West E, Shea LD, et al. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod. 2006;75:916–23.

    Article  CAS  PubMed  Google Scholar 

  119. Kreeger PK, Fernandes NN, Woodruff TK, et al. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005;73:942–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Louhio H, Hovatta O, Sjoberg J, et al. The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod. 2000;6:694–8.

    Article  CAS  PubMed  Google Scholar 

  121. Xu M, Kreeger PK, Shea LD, et al. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006;12:2739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, Woodruff TK. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24(10):2531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Trimble EL, Harlan LC, Clegg L, et al. Pre-operative imaging, surgery, and adjuvant therapy for women diagnosed with cancer of the corpus uteri in community practice in the US. Gynecol Oncol. 2005;96:741–8.

    Article  PubMed  Google Scholar 

  124. Ushijima K, Yahata H, Yoshikawa H, et al. Multicenter phase II study of fertility-sparing treatment with medroxyprogesterone acetate for endometrial carcinoma and atypical hyperplasia in young women. J Clin Oncol. 2007;25:2798–803.

    Article  CAS  PubMed  Google Scholar 

  125. Jadoul P, Donnez J. Conservative treatment may be beneficial for young women with atypical endometrial hyperplasia or endometrial adenocarcinoma. Fertil Steril. 2003;80:1315–24.

    Article  PubMed  Google Scholar 

  126. Ramirez P, Frumovitz M, Bodurka D, et al. Hormonal therapy for the management of grade 1 endometrial adenocarcinoma: a literature review. Gynecol Oncol. 2004;95:133–8.

    Article  CAS  PubMed  Google Scholar 

  127. Gallos ID, Yap J, Rajkhowa M, Luesley DM, Coomarasamy A, Gupta JK. Regression, relapse, and live birth rates with fertility-sparing therapy for endometrial cancer and atypical complex endometrial hyperplasia: a systematic review and meta-analysis. Am J Obstet Gynecol. 2012;207(4):266.e1–12.

    Article  Google Scholar 

  128. Montz FJ, Bristow RE, Bovicelli A, et al. Intrauterine progesterone treatment of early endometrial cancer. Am J Obstet Gynecol. 2002;186(4):651–7.

    Article  CAS  PubMed  Google Scholar 

  129. Westin S, Sun C, Broaddus R, Pal N, Nath V, Urbauer D, Schmeler K, Lu K, Bodurka D, Johnston T. Prospective phase II trial of the Levonorgestrel Intrauterine System (Mirena) to treat complex atypical hyperplasia and grade 1 endometrioid endometrial cancer. Gynecol Oncol. 2012;125 Suppl 1:S9.

    Google Scholar 

  130. Baker J, Obermair A, Gebski V, et al. Efficacy of oral or intrauterine device-delivered progestin in patients with complex endometrial hyperplasia with atypia or early endometrial adenocarcinoma: a meta-analysis and systematic review of the literature. Gynecol Oncol. 2012;125:263–70.

    Article  CAS  PubMed  Google Scholar 

  131. Penner K, Dorigo O, Aoyama C, et al. Predictors of resolution of complex atypical hyperplasia or grade 1 endometrial adenocarcinoma in premenopausal women treated with progestin therapy. Gynecol Oncol. 2012;124:542–8.

    Article  PubMed  Google Scholar 

  132. Plaxe SC, Braly PS, Freddo JL, McClay E, Kirmani S, Howell SB. Profiles of women age 30–39 and age less than 30 with epithelial ovarian cancer. Obstet Gynecol. 1993;81(5 Pt 1):651–4.

    CAS  PubMed  Google Scholar 

  133. Satoh T, Hatae M, Watanabe Y, et al. Outcomes of fertility-sparing surgery for stage I epithelial ovarian cancer: a proposal for patient selection. J Clin Oncol. 2010;28(10):1727–32.

    Article  PubMed  Google Scholar 

  134. Kashima K, Yahata T, Fujita K, Tanaka K. Outcomes of fertility-sparing surgery for women of reproductive age with FIGO stage IC epithelial ovarian cancer. Int J Gynaecol Obstet. 2013;121(1):53–5.

    Article  PubMed  Google Scholar 

  135. Zhang M, Cheung MK, Shin JY, et al. Prognostic factors responsible for survival in sex cord stromal tumors of the ovary—an analysis of 376 women. Gynecol Oncol. 2007;104:396–400.

    Article  PubMed  Google Scholar 

  136. Guvenal T, Dursun P, Hasdemir PS, et al. Effect of surgical staging on 539 patients with borderline ovarian tumors: a Turkish Gynecologic Oncology Group study. Gynecol Oncol. 2013;131(3):546–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos L. Tanyi MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanyi, J.L. (2016). Preservation of Fertility in Gynecological Malignancies. In: Giordano, A., Macaluso, M. (eds) Gynecological Cancers. Current Clinical Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-32907-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32907-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32905-5

  • Online ISBN: 978-3-319-32907-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics