Skip to main content

Orthogonal Signaling Enabled Cooperative Cognitive Radio Networking

  • Chapter
  • First Online:
Cooperative Cognitive Radio Networking

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 410 Accesses

Abstract

In this chapter, a cross-layer two-phase time division multiple access (TDMA) cooperation framework for primary users (PUs) and secondary user (SUs) in a cooperative cognitive radio network (CCRN) is proposed and analyzed. Specifically, the cooperation framework in which the SU uses the two-dimensional orthogonal modulation for leveraging two degrees of freedom to relay the PU’s packet and transmit its own data orthogonally in the same time slot is firstly explored. To evaluate the cooperation performance of the proposed framework, a weighted sum throughput maximization problem is then formulated. With the help of primal-dual sub-gradient algorithms, the optimization problem is solved to obtain closed-form solutions to the optimal powers and allocation of the PU and the SU for both the amplify-and-forward (AF) and decode-and-forward (DF) relaying modes. Cooperative regions based on channel state information are given and discussed, and a cross-layer multi-user coordination for a PU to select a relaying SU for both AF and DF are presented. Extensive simulation results validate the theoretical analysis and show that the proposed two-phase TDMA cooperation framework can achieve mutual benefit in the CCRN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For convenience, we consider the case in which relay selection is performed regularly at the start of each superframe. In general, relay selection may be carried out as necessary, in which case the prefix would be inserted accordingly.

References

  1. FCC, “Spectrum policy task force,” ET Docket 02-135, Nov. 2002.

    Google Scholar 

  2. S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.

    Google Scholar 

  3. S. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,” in Proc. IEEE Int’l Conf. Commun., Istanbul, Turkey Jun. 2006.

    Google Scholar 

  4. G. Ganesan, and Y. Li, “Cooperative spectrum sensing in cognitive radio, part I: Two user networks,” IEEE Trans. Wirel. Commun., vol. 6, no. 6, pp. 2204–2213, Jun. 2007.

    Google Scholar 

  5. K. Ben Lataief, and W. Zhang, “Cooperative communications for cognitive radio networks,” Proc. IEEE, vol. 97, no. 5, pp. 878–893, May 2009.

    Google Scholar 

  6. J. Jia, J. Zhang, and Q. Zhang, “Cooperative relay for cognitive radio networks,” in Proc. INFOCOM, pp. 2304–2312, Rio de Janeiro, Brazil, Apr. 2009.

    Google Scholar 

  7. Q. Zhang, J. Jia, and J. Zhang, “Cooperative relay to improve diversity in cognitive radio networks,” IEEE Commun. Magazine, vol. 47, no. 2, pp. 111–117, Feb. 2009.

    Google Scholar 

  8. L. Li, X. Zhou, H. Xu, G. Li, D. Wang, and A. Soong, “Simplified relay selection and power allocation in cooperative cognitive radio systems,” IEEE Trans. Wirel. Commun., vol. 10, no. 1, pp. 33–36, Jan. 2011.

    Google Scholar 

  9. Y. Zou, Y. Yao, and B. Zheng, “Cognitive transmissions with multiple relays in cognitive radio networks,” IEEE Trans. Wirel. Commun., vol. 10, no. 2, pp. 648–659, Feb. 2011.

    Google Scholar 

  10. M. Xie, W. Zhang, and K. Wong, “A geometric approach to improve spectrum efficiency for cognitive relay networks,” IEEE Trans. Wirel. Commun., vol. 9, no. 1, pp. 268–281, Jan. 2010.

    Google Scholar 

  11. N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 1813–1827, May 2006.

    Google Scholar 

  12. J. Zhang, and Q. Zhang, “Stackelberg game for utility-based cooperative cognitive radio networks,” in Proc. MobiHoc, New Orleans, LA, May 2009.

    Google Scholar 

  13. O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and R. Pickholtz. “Spectrum leasing to cooperating secondary ad hoc networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 203–213, Jan. 2008.

    Google Scholar 

  14. M. Levorato, O. Simeone, U. Mitra, and M. Zorzi, “Cooperation and coordination in cognitive networks with packet retransmission,” in Proc. IEEE Int’l Inf. Theory Workshop, Taormina, Oct. 2009.

    Google Scholar 

  15. O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Stable throughput of cognitive radios with and without relaying capability,” IEEE Trans. Wirel. Commun., vol. 55, no. 12, pp. 2351–2360, Dec. 2007.

    Google Scholar 

  16. Y. Yi, J. Zhang, Q. Zhang, T. Jiang, and J. Zhang, “Cooperative communication-aware spectrum leasing in cognitive radio networks,” in Proc. DySPAN, Singapore, Apr. 2010.

    Google Scholar 

  17. W. Su, J. Matyjas, and S. Batalama, “Active cooperation between primary users and cognitive radio users in cognitive ad-hoc networks,” in Proc. IEEE ICASSP, Dallas, TX, Mar. 2010.

    Google Scholar 

  18. A. Attar, M. Nakhai, and A. Aghvami, “Cognitive radio game for secondary spectrum access problem,” IEEE Trans. Wirel. Commu., vol. 8, no. 4, pp. 2121–2131, Apr. 2009.

    Google Scholar 

  19. P. Lin, J. Jia, Q. Zhang, and M. Hamdi, “Dynamic spectrum sharing with multiple primary and secondary users,” in Proc. IEEE Int’l Conf. Commun., Cape Town, South Afica, May 2010.

    Google Scholar 

  20. Y. Chen, and K. Liu, “Indirect reciprocity game modelling for cooperation stimulation in cognitive networks,” IEEE Trans. Wirel. Commu., vol. 59, no. 1, pp. 159–168, Jan. 2011.

    Google Scholar 

  21. A. El-Sherif, A. Sadek, and K. Liu, “Opportunistic multiple access for cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 704–715, Apr. 2011.

    Google Scholar 

  22. S. Hua, H. Liu, M. Wu, and S. Panwar, “Exploiting MIMO antennas in cooperative cognitive radio networks,” in Proc. INFOCOM, pp. 2714–2722, Shanghai, China, Apr. 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

2.1.1 Derivation of Optimal Solutions for AF Cooperation

Using the Lagrange multiplier method, the objective function in (2.4) can be expressed as

$$\displaystyle\begin{array}{rcl} \mathcal{L}(\alpha,P_{P},P_{S})& =& (1-\zeta )C_{PB\_AF} +\zeta C_{SB\_AF} \\ & & +\lambda _{1}(C_{Pd} - C_{PB\_AF}) +\lambda _{2}(C_{ST} - C_{SB\_AF}) \\ & & +\lambda _{3}(P_{P} + P_{S} - P_{M}) +\lambda _{4}(\alpha -1) -\lambda _{5}\alpha {}\end{array}$$
(2.21)

where \(\lambda _{i} \geq 0\) (i = 1, . . , 5) are Lagrange multipliers.

By applying the KKT conditions, a set of equations can be obtained as

$$\displaystyle{ P_{P} > 0,P_{S} > 0,\text{and}\quad \lambda _{i} \geq 0,\text{for}\quad i = 1,\ldots 5 }$$
(2.22a)
$$\displaystyle{ \lambda _{1}[C_{Pd} -\frac{1} {2}\log _{2}(1 + SNR_{PB\_AF})] = 0 }$$
(2.22b)
$$\displaystyle{ \lambda _{2}[C_{ST} -\frac{1} {2}\log _{2}(1 + SNR_{SB\_AF})] = 0 }$$
(2.22c)
$$\displaystyle{ \lambda _{3}(P_{P} + P_{S} - P_{M}) = 0 }$$
(2.22d)
$$\displaystyle{ \lambda _{4}(\alpha -1) = 0 }$$
(2.22e)
$$\displaystyle{ \lambda _{5}\alpha = 0 }$$
(2.22f)
$$\displaystyle{ \frac{\partial \mathcal{L}} {\partial \alpha } = 0, \frac{\partial \mathcal{L}} {\partial P_{P}} = 0\quad \text{and}\quad \frac{\partial \mathcal{L}} {\partial P_{S}} = 0. }$$
(2.22g)

Solving the equation set yields

$$\displaystyle{ \alpha ^{{\ast}} = \frac{M(P_{P}\gamma _{\mathit{PS}} +\gamma _{\mathit{SB}}P_{S} + 1)} {N\gamma _{\mathit{SP}}P_{S}} }$$
(2.23)

where M and N are given by

$$\displaystyle\begin{array}{rcl} M& =& (\lambda _{4}\zeta -\lambda _{1})P_{P}^{2}\gamma _{ \mathit{PB}}\gamma _{\mathit{PS}} + (2\zeta -\lambda _{4})P_{P}\gamma _{\mathit{PS}} {}\\ & \ \ & -(\lambda _{1} + P_{S}\gamma _{\mathit{SP}})P_{P}\gamma _{\mathit{PS}} + (\zeta -\lambda _{1})(P_{P}\gamma _{\mathit{PB}} + 1) {}\\ & \ \ & +(\zeta \lambda _{5}\gamma _{\mathit{PS}}\gamma _{\mathit{SB}} -\lambda _{1}\gamma _{\mathit{PB}}\gamma _{\mathit{SP}})P_{S}P_{P} {}\\ & \ \ & +(\zeta P_{P}\gamma _{\mathit{PB}}+\zeta )P_{S}\gamma _{\mathit{SB}} -\lambda _{1}\gamma _{\mathit{SP}}P_{S} {}\\ N& =& (\zeta \lambda _{4}\gamma _{\mathit{SP}} -\lambda _{1}\gamma _{\mathit{SB}})P_{P}\gamma _{\mathit{PS}}P_{S} + (\zeta -\lambda _{1})P_{P}\gamma _{\mathit{PB}}\gamma _{\mathit{SB}}P_{S} {}\\ & \ \ & -\lambda _{1}\gamma _{\mathit{SP}}P_{S} +\gamma _{\mathit{SB}}P_{S} + (\lambda _{5}\zeta -\lambda _{1})P_{P}\gamma _{\mathit{PB}} {}\\ & \ \ & +(\zeta -\lambda _{1})P_{P}^{2}\gamma _{ \mathit{PB}}\gamma _{\mathit{PS}} -\lambda _{1} + 2(\zeta -\lambda _{1})P_{P}\gamma _{\mathit{PS}} {}\\ & \ \ & +(1 -\lambda _{1})P_{P}^{2}\gamma _{ \mathit{PS}}^{2} +\zeta. {}\\ \end{array}$$

The quantity P P is the root of the quadratic equation

$$\displaystyle{ a_{4}P_{P}^{4} + a_{ 3}P_{P}^{3} + a_{ 2}P_{P}^{2} + a_{ 1}P_{P} + a_{0} = 0 }$$
(2.24)

where the coefficients of the equation are

$$\displaystyle\begin{array}{rcl} a_{4}& =& \ln 2\gamma _{\mathit{PB}}\gamma _{\mathit{PS}}^{2}\lambda _{ 2} {}\\ a_{3}& =& 2\ln 2\gamma _{\mathit{PB}}\gamma _{\mathit{PS}}\lambda _{2} -\lambda _{1}\gamma _{\mathit{PS}}^{2}\gamma _{ \mathit{PB}} +\lambda _{3}\gamma _{\mathit{PS}}^{2}\gamma _{ \mathit{PB}} {}\\ & \ \ & +2\ln 2\gamma _{\mathit{PS}}^{2}\lambda _{ 2} + 2\ln 2P_{S}\gamma _{\mathit{PB}}\gamma _{\mathit{PS}}\gamma _{\mathit{SP}}\lambda _{2} {}\\ a_{2}& =& (\gamma _{\mathit{SB}}P_{S} + 1)(\ln 2P_{S}\gamma _{\mathit{PS}}\gamma _{\mathit{SB}}\lambda _{2} +\ln 2P_{S}\gamma _{\mathit{PB}}\gamma _{\mathit{SP}}\lambda _{2} {}\\ & \ \ & +3\lambda _{3}\ln 2\gamma _{\mathit{PS}}\lambda _{2} + 2\gamma _{\mathit{PB}}\gamma _{\mathit{PS}} -\lambda _{1}\gamma _{\mathit{PB}}\gamma _{\mathit{PS}}) {}\\ a_{1}& =& (\gamma _{\mathit{SB}}P_{S} + 1)(-\gamma _{\mathit{PS}}\zeta \gamma _{\mathit{SP}}P_{S} -\zeta \gamma _{\mathit{SP}}P_{S} +\gamma _{\mathit{PB}}\gamma _{\mathit{SB}}P_{S} {}\\ & \ \ & +\ln 2P_{S}\gamma _{\mathit{SB}}\lambda _{2} -\zeta \gamma _{\mathit{PB}} +\lambda _{2}\ln 2 - 2\zeta \gamma _{\mathit{PS}} +\lambda _{3}\gamma _{\mathit{PB}}) {}\\ a_{0}& =& -\lambda _{3}\zeta + 2\lambda _{1}\gamma _{\mathit{SP}}P_{S} - 2\lambda _{3}\zeta \gamma _{\mathit{SB}}P_{S} {}\\ & \ \ & -\zeta \gamma _{\mathit{SB}}^{2}P_{ S}^{2} +\lambda _{ 1}\gamma _{\mathit{SP}}^{2}P_{ S}^{2} +\lambda _{ 1}. {}\\ \end{array}$$

Also,

$$\displaystyle{ P_{S}^{{\ast}} = \left [ \frac{\sqrt{E} - D} {2\lambda _{2}\lambda _{3}\ln 2(\gamma _{\mathit{PS}} + 1)\gamma _{\mathit{SB}}},0\right ]^{+} }$$
(2.25)

where

$$\displaystyle\begin{array}{rcl} D& =& \lambda _{2}\ln 2(2\lambda _{3} + 3\gamma _{\mathit{PS}} + 2\lambda _{3}\gamma _{\mathit{PB}}\gamma _{\mathit{PS}} +\gamma _{\mathit{PB}}) {}\\ E& =& \ln 2\lambda _{2}(\gamma _{\mathit{PB}} -\lambda _{3}\gamma _{\mathit{PS}})(\ln 2\gamma _{\mathit{PB}}\lambda _{2} -\lambda _{3}\ln 2\gamma _{\mathit{PS}}\lambda _{2} {}\\ & \ \ & +4\lambda _{3}\gamma _{\mathit{PS}}\gamma _{\mathit{SB}} - 4\gamma _{\mathit{SB}}\lambda _{1}\gamma _{\mathit{PS}} + 4\gamma _{\mathit{SB}} - 4\lambda _{1}\gamma _{\mathit{SP}}). {}\\ \end{array}$$

This quadratic equation can be solved analytically or numerically, and according to the power constraint of the PU, the optimal P P can be obtained.

Using the Lagrangian relaxation iterative algorithm, we can further iteratively compute \(\lambda _{i}\) by

$$\displaystyle\begin{array}{rcl} \lambda _{1}^{(n+1)}& =& [\lambda _{ 1}^{(n)} +\mu ^{(n)}(C_{ PB} - C_{PB\_AF}^{(n)})]^{+}{}\end{array}$$
(2.26)
$$\displaystyle\begin{array}{rcl} \lambda _{2}^{(n+1)}& =& [\lambda _{ 2}^{(n)} +\mu ^{(n)}(C_{ ST} - C_{SB\_AF}^{(n)})]^{+}{}\end{array}$$
(2.27)
$$\displaystyle\begin{array}{rcl} \lambda _{3}^{(n+1)}& =& [\lambda _{ 3}^{(n)} +\mu ^{(n)}(P_{ P}^{(n)} + P_{ S}^{(n)} - P_{ M})]^{+},{}\end{array}$$
(2.28)
$$\displaystyle\begin{array}{rcl} \lambda _{4}^{(n+1)}& =& [\lambda _{ 4}^{(n)} +\mu ^{(n)}(\alpha ^{(n)} - 1)]^{+}{}\end{array}$$
(2.29)
$$\displaystyle\begin{array}{rcl} \lambda _{5}^{(n+1)}& =& [\lambda _{ 5}^{(n)} +\mu ^{(n)}\alpha ^{(n)}]^{+}{}\end{array}$$
(2.30)

where \([x]^{+} =\max (x,0)\), n is the iteration index and μ (n) is a sequence of scalar step sizes. Substituting (2.26)–(2.30) into (2.23)–(2.25), we can obtain α , P P , and P S .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Cao, B., Zhang, Q., Mark, J.W. (2016). Orthogonal Signaling Enabled Cooperative Cognitive Radio Networking. In: Cooperative Cognitive Radio Networking. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32881-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32881-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32879-9

  • Online ISBN: 978-3-319-32881-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics