Skip to main content

Phosphatases: Their Roles in Cancer and Their Chemical Modulators

  • Chapter
  • First Online:
Protein Targeting Compounds

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 917))

Abstract

Phosphatases are involved in basically all cellular processes by dephosphorylating cellular components such as proteins, phospholipids and second messengers. They counteract kinases of which many are established oncogenes, and therefore kinases are one of the most important drug targets for targeted cancer therapy. Due to this relationship between kinases and phosphatases, phosphatases are traditionally assumed to be tumour suppressors. However, research findings over the last years prove that this simplification is incorrect, as bona-fide and putative phosphatase oncogenes have been identified. We describe here the role of phosphatases in cancer, tumour suppressors and oncogenes, and their chemical modulators, and discuss new approaches and opportunities for phosphatases as drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATM:

Ataxia telangiectasia mutated kinase

BCAR1:

Breast cancer antiestrogen resistance 1

Chk2:

Cell cycle checkpoint kinase 2

DEP-1:

Density-enhanced phosphatase-1

DUSPs:

Dual specificity phosphatases

IZD:

Isothiazolidinone

JMML:

Juvenile myelomonocytic leukemia

LOH:

Loss of heterozygosity

PDZ:

PSD95/Dlg/ZO1

PEST:

Domain rich in proline, glutamate, serine and threonine

PH:

Pleckstrin homology

PHLPP:

PH domain leucine-rich repeat protein phosphatases

PI3K:

Phosphatidylinositol-3-kinase

PIP3:

Phosphainositol-3,4,5-trisphosphate

PKC:

Protein kinase C

PPPs:

Phosphoprotein phosphatases

PRL:

Phosphatases of regenerating liver

PSTKs:

Protein serine/threonine kinases

PSTPs:

Protein serine/threonine phosphatases

PTEN:

Phosphatase and tensin homologue deleted on chromosome 10

PTKs:

Protein tyrosine kinases

PTPs:

Protein tyrosine phosphatases

PTPα or RPTPα:

Receptor-like protein tyrosine phosphatase α

RPTP:

Membrane bound receptor like protein tyrosine phosphatase

SFKs:

Src family kinases

SH2:

Src homology 2

SNPs:

Single nucleotide polymorphisms

TCPTP:

T-cell phosphatase

WIP1:

Wild-type p53-induced phosphatase 1

References

  1. Abdulkareem IH, Blair M (2013) Phosphatase and tensin homologue deleted on chromosome 10. Niger Med J 54(2):79–86

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alonso A et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  CAS  PubMed  Google Scholar 

  3. Ardini E et al (2000) Expression of protein tyrosine phosphatase alpha (RPTPa) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo. Oncogene 19(43):4979–4987

    Article  CAS  PubMed  Google Scholar 

  4. Bakken T et al (2010) The phosphatase Shp2 is required for signaling by the Kaposi’s sarcoma-associated herpesvirus viral GPCR in primary endothelial cells. Virology 397(2):379–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balavenkatraman KK et al (2006) DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients. Oncog Short Commun 25(47):6319–6324

    CAS  Google Scholar 

  6. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barr AJ (2010) Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem 2(10):1563–1576

    Google Scholar 

  8. Bessette DC et al (2008) PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev 27(2):231–252

    Article  CAS  PubMed  Google Scholar 

  9. Bentires-Alj M et al (2004) Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and Adult Acute Myelogenous Leukemia. Cancer Res 64(24):8816–8820

    Article  CAS  PubMed  Google Scholar 

  10. Bjorge JD et al (2000) Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem 275(52):41439–41446

    Article  CAS  PubMed  Google Scholar 

  11. Bialy L, Waldmann H (2005) Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew Chem Int 44(25):3814–3839

    Article  CAS  Google Scholar 

  12. Brognard JC, Newton AC (2008) PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol Metab 19(6):223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calin GA et al (2000) Low frequency of alterations of the a (PPP2R1A) and b (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19(9):1191–1195

    Article  CAS  PubMed  Google Scholar 

  14. Chen KF et al (2010) CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells. Oncogene 29:6257–6266

    Article  CAS  PubMed  Google Scholar 

  15. Chen SC et al (2009) Protein tyrosine phosphatase-α complexes with the IGF-I receptor and undergoes IGF-I-stimulated tyrosine phosphorylation that mediates cell migration. Am J Physiol Cell Physiol 297(1):C133–C139

    Article  CAS  PubMed  Google Scholar 

  16. Chin CN et al (2005) Transmembrane homodimerization of receptor-like protein tyrosine phosphatases. FEBS Lett 579(17):3855–3858

    Article  CAS  PubMed  Google Scholar 

  17. Choi et al (2006) Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Nat Prod Res 20(4):341–346

    Article  CAS  PubMed  Google Scholar 

  18. Cimino D et al (2008) Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 123(6):1327–1338

    Article  CAS  PubMed  Google Scholar 

  19. Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508

    Article  CAS  PubMed  Google Scholar 

  20. Daouti et al (2008) A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res 68(4):1162–1169

    Article  CAS  PubMed  Google Scholar 

  21. De Munter S et al (2013) Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 8(1):36–45

    Article  PubMed  Google Scholar 

  22. Dong Y et al (2014) Phosphatase of regenerating liver 2 (PRL2) deficiency impairs Kit signaling and spermatogenesis. J Biol Chem 289(6):3799–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dubé N et al (2004) The role of protein tyrosine phosphatase 1B in Ras signalling. Proc Natl Acad Sci U S A 101(7):1834–1839

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fan Y et al (2013) Over expression of PPP2R2C inhibits human glioma cells growth through the suppression of mTOR pathway. FEBS Lett 587(24):3892–3897

    Article  CAS  PubMed  Google Scholar 

  25. Ferreira CV et al (2006) Natural compounds as a source of protein tyrosine phosphatase inhibitors: application to the rational design of small-molecule derivatives. Biochimie 88(12):1859–1873

    Article  CAS  PubMed  Google Scholar 

  26. Fu Z et al (2014) Proto-oncogene Wip1, a member of a new family of proliferative genes in NSCLC and its clinical significance. Tumor Biol 5(4):2975–2981

    Article  Google Scholar 

  27. Gao T et al (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promots apoptosis and suppresses tumor growth. Mol Cell 18(1):13–24

    Article  CAS  PubMed  Google Scholar 

  28. Georgescu MM (2011) PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1(12):1170–1177

    Article  Google Scholar 

  29. Gilmartin AG et al (2014) Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat Chem Biol 10(3):181–187

    Article  CAS  PubMed  Google Scholar 

  30. Guezennec XL, Bulavin DV (2009) WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 35(2):109–114

    Article  PubMed  Google Scholar 

  31. Hardy S et al (2012) Impact of oncogenic protein tyrosine phosphatases in cancer. Anticancer Agents Med Chem 12(1):4–18

    Article  CAS  PubMed  Google Scholar 

  32. Hatakeyama M (2004) Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4(9):688–694

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi R et al (2011) Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1). Biochemistry (Mosc) 50:4537–4549

    Article  CAS  Google Scholar 

  34. He R et al (2012) Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 280(2):731–750

    Article  PubMed  PubMed Central  Google Scholar 

  35. Iuliano R et al (2004) The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis. Oncogene 23(52):8432–8438

    Article  CAS  PubMed  Google Scholar 

  36. Jawad N et al (2011) Inflammatory bowel disease and colon cancer. Recent Results Cancer Res 185:99–115

    Article  CAS  PubMed  Google Scholar 

  37. Jiang ZX, Zhang ZX (2008) Targeting PTPs with small molecule inhibitors treatment. Cancer Metastasis Rev 27(2):263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Julien SG et al (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11:35–49

    Article  CAS  PubMed  Google Scholar 

  39. Keane et al (1996) The protein tyrosine phosphatase DEP-1 is induced during differentiation and inhibits growth of breast cancer cells. Cancer Res 56:4236–4243

    CAS  PubMed  Google Scholar 

  40. Keyes KT et al (2010) Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol 298:H1198–H1208. doi:10.1152/ajpheart.00915.2009

    Article  CAS  PubMed  Google Scholar 

  41. Kleppe M et al (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet 42(6):530–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krishnan N et al (2014) Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol 10(7):558–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Labbé DP (2012) Protein tyrosine phosphatases in cancer: friends and foes! Prog Mol Biol 106:253–306

    Google Scholar 

  44. Leslie NR et al (2008) Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 27(41):5464–5476

    Article  CAS  PubMed  Google Scholar 

  45. Lesueur F et al (2005) Allelic association of the human homologue of the mouse modifier Ptprj with breast cancer. Hum Mol Genet 14(16):2349–2356

    Article  CAS  PubMed  Google Scholar 

  46. Li J et al (1997) PTEN, a putative protein tyrosinephosphatase gene mutated in human brain, breast and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  PubMed  Google Scholar 

  47. Li X et al (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6(275):rs10

    Article  PubMed  Google Scholar 

  48. Lu X et al (2008) The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27(2):123–135

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ma L et al (2011) Overexpression and small molecule-triggered downregulation of CIP2A in lung cancer. PLoS One 6:e20159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maehama T et al (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Rev Biochem 70:247–279

    Article  CAS  Google Scholar 

  51. Mali RS et al (2012) Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT. Blood 120:2669–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matozaki T et al (2009) Protein tyrosine phosphatase SHP-2: a protooncogene product that promotes Ras activation. Cancer Sci 100(10):1786–1793

    Article  CAS  PubMed  Google Scholar 

  53. McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 75(6):1249–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Millward TA et al (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 24(5):186–191

    Article  CAS  PubMed  Google Scholar 

  55. Mukhopadhyay A et al (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Myers MP et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95(23):13513–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nanney LB et al (1997) Altered distribution and expression of protein tyrosine phosphatases in normal human skin as compared to squamous cell carcinomas. J Cutan Pathol 24(9):521–532

    Article  CAS  PubMed  Google Scholar 

  58. Newton AC, Trotman LC (2014) Turning Off AKT: PHLPP as a drug target. Annu Rev Pharmacol Toxicol 54:537–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O’Donovan DS et al (2013) Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis 4:e468. doi:10.1038/cddis.2012.208

    Article  PubMed  PubMed Central  Google Scholar 

  60. O’Neill AK et al (2013) Suppression of survival signalling pathways by the phosphatase PHLPP. FEBS J 280(2):572–583

    Article  PubMed  PubMed Central  Google Scholar 

  61. Östman A et al (2006) Protein-tyrosine phosphatases and cancer. Cancer Nat Rev 6(4):307–320

    Article  Google Scholar 

  62. Paduano F et al (2012) Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity. ACS Chem Biol 7(10):1666–1676

    Article  CAS  PubMed  Google Scholar 

  63. Pagarigan KT et al (2013) Drosophila PRL-1 is a growth inhibitor that counteracts the function of the Src oncogene. PLoS One 8(4):e61084. doi:10.1371/journal.pone.0061084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patterson KI et al (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418(3):475–489

    Article  CAS  PubMed  Google Scholar 

  65. Pathak MK et al (2002) Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Mol Cancer Ther 1:1255–1264

    CAS  PubMed  Google Scholar 

  66. Perrotti D, Neviani P (2013) Targeting a tumor suppressor to suppress tumor growth: news and views on protein phosphatase 2A (PP2A) as a target for anti-cancer therapy. Lancet Oncol 14(6):e229–e238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ponniah S et al (1999) Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Curr Biol 9(10):535–538

    Article  CAS  PubMed  Google Scholar 

  68. Puius YA et al (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci 94(25):13420–13425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qiao M et al (2007) Metastatic potential of 21 T human breast cancer cells depends on Akt/protein kinase B activation. Cancer Res 67(11):5293–5299

    Article  CAS  PubMed  Google Scholar 

  70. Rios P et al (2013) Molecular mechanisms of the PRL phosphatases. FEBS J 280(2):505–524

    Article  CAS  PubMed  Google Scholar 

  71. Rios P et al (2014) Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 20(14):2251–2273

    Article  CAS  PubMed  Google Scholar 

  72. Rosivatz E et al (2006) A small-molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1(12):780–790

    Article  CAS  PubMed  Google Scholar 

  73. Ruivenkamp CA et al (2002) Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 31(3):295–300

    Article  CAS  PubMed  Google Scholar 

  74. Schönthal AH (2001) Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett 170(1):1–13

    Article  PubMed  Google Scholar 

  75. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139(3):468–484

    Article  CAS  PubMed  Google Scholar 

  76. Sierecki E et al (2010) Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem 53(19):6899–6911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sierecki E, Newton A (2014) Biochemical characterization of the phosphatase domain of the tumor suppressor PH domain leucine-rich repeat protein phosphatase (PHLPP). Biochemistry 53(24):3971–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stebbing J et al (2014) The regulatory roles of phosphatases in cancer. Oncog Rev 33(8):939–953

    Article  CAS  Google Scholar 

  79. Stephens BJ et al (2005) PRL phosphatases as potential molecular targets in cancer. Cancer Ther 4(11):1653–1661

    Article  CAS  Google Scholar 

  80. Su J et al (1999) Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr Biol 9(10):505–511

    Article  CAS  PubMed  Google Scholar 

  81. Sun G et al (2012) Protein tyrosine phosphatase – phosphotyrosyl-789 binds BCAR3 to position Cas for activation at integrin-mediated focal adhesions. Cell Biol 32(18):3776–3789

    CAS  Google Scholar 

  82. Tiganis T (2013) PTP1B and TCPTP – nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J 280(2):445–458

    Article  CAS  PubMed  Google Scholar 

  83. Tonks NK, Diltz CD, Fischer EH (1988) Purification of the major protein tyrosine phosphatases of human placenta. J Biol Chem 263:6722–6730

    CAS  PubMed  Google Scholar 

  84. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7(11):833–846

    Google Scholar 

  85. Trapasso F et al (2000) Rat protein tyrosine phosphatase η suppresses the neoplastic phenotype of retrovirally transformed thyroid cells through the stabilization of p27Kip1. Mol Cell Biol 20(24):9236–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trapasso F et al (2004) Restoration of receptor-type protein tyrosine phosphatase h function inhibits human pancreatic carcinoma cell growth in vitro and in vivo. Carcinogenesis 25(11):2107–2114

    Article  CAS  PubMed  Google Scholar 

  87. Vintonyak VV et al (2009) The therapeutic potential of phosphatase inhibitors. Curr Opin Chem Biol 13(3):272–283

    Google Scholar 

  88. Virshup DM (2000) Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 12(2):180–185

    Article  CAS  PubMed  Google Scholar 

  89. Walter G, Ruediger R (2012) Mouse model for probing tumor suppressor activity of protein phosphatase 2A in diverse signaling pathways. Cell Cycle 11(3):451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang J et al (2010) Suppression of PTP1B in gastric cancer cells in vitro induces a change in the genome-wide expression profile and inhibits gastric cancer cell growth. Cell Biol Int 34(7):747–753

    Article  CAS  PubMed  Google Scholar 

  91. Westermack J, Hahn WC (2008) Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 14(4):152–160

    Article  Google Scholar 

  92. Wiener JR et al (1994) Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am J Obstet Gynecol 170(4):1177–1183

    Article  CAS  PubMed  Google Scholar 

  93. Yi et al (2002) Anticancer activity of sodium stibogluconate in synergy with IFNs. J Immunol 169:5978–5985

    Article  CAS  PubMed  Google Scholar 

  94. Yip SC et al (2010) PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 35(8):442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yuan C et al (2012) Potent and selective inhibition of T-cell protein tyrosine phosphatase (TCPTP) by a dinuclear copper (II) complex. Chem Commun 48:1153–1155

    Article  CAS  Google Scholar 

  96. Zhang S et al (2009) Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy. J Am Chem Soc 131(36):13072–13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng XM et al (1992) Cell transformation and activation of pp 60c-src by overexpression of a protein tyrosine phosphatase. Nature 359(6393):336–339

    Article  CAS  PubMed  Google Scholar 

  98. Zhu S et al (2007) PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res 67(21):10129–10137

    Article  CAS  PubMed  Google Scholar 

  99. Zhu YH, Bulavin DV (2012) Wip1-dependent signaling pathways in health and diseases. In: Progress in molecular biology and translational science, vol 1. Elsevier, Oxford, pp 307–325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Köhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fontanillo, M., Köhn, M. (2016). Phosphatases: Their Roles in Cancer and Their Chemical Modulators. In: Böldicke, T. (eds) Protein Targeting Compounds. Advances in Experimental Medicine and Biology, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-32805-8_10

Download citation

Publish with us

Policies and ethics