Skip to main content

Substrate Specificity of Ketosynthase Domains Part III: Elongation-Based Substrate Specificity

  • Chapter
  • First Online:
Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases

Part of the book series: Springer Theses ((Springer Theses))

  • 586 Accesses

Abstract

In this chapter, new insights into substrate specificity during the elongation step of KS-catalysed polyketide biosynthesis are reported. Using a range of KS domains from the psymberin (Psy) and bacillaene (Bae) PKSs, each with different predicted acyl intermediates, together with MS-based methodology, the substrate tolerance at the elongation step is shown to be more demanding than the preceding acylation. A mechanism, based on reversible KS acylation, is proposed to rationalise this phenomenon, and is supported by experimental evidence. The rationally-designed mutant of BaeL KS5 described in Chap. 3, which is able to accept a β-Me branched acyl unit, is also shown to elongate this bulky acyl group in addition to 5- and 6-membered rings, demonstrating scope for engineering new polyketides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.C. Gay et al., A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure 22, 444–451 (2014)

    Article  CAS  Google Scholar 

  2. B. Busch et al., Multifactorial control of iteration events in a modular polyketide assembly line. Angew. Chem. Int. Ed. 52, 5285–5289 (2013)

    Article  CAS  Google Scholar 

  3. M. Till, P.R. Race, Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases. Biotechnol. Lett. 36, 877–888 (2014)

    Article  CAS  Google Scholar 

  4. R.J. Heath, C.O. Rock, The Claisen condensation in biology. Nat. Prod. Rep. 19, 581–596 (2002)

    Article  CAS  Google Scholar 

  5. K. Watanabe, C.C.C. Wang, C.N. Boddy, D.E. Cane, C. Khosla, Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J. Biol. Chem. 278, 42020–42026 (2003)

    Article  CAS  Google Scholar 

  6. J.Q. Wu, K. Kinoshita, C. Khosla, D.E. Cane, Biochemical analysis of the substrate specificity of the beta-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase. Biochemistry 43, 16301–16310 (2004)

    Article  CAS  Google Scholar 

  7. L. Gu et al., GNAT-like strategy for polyketide chain initiation. Science 318, 970–974 (2007)

    Article  CAS  Google Scholar 

  8. T. Nguyen et al., Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008)

    Article  CAS  Google Scholar 

  9. K.M. Fisch et al., Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat. Chem. Biol. 5, 494–501 (2009)

    Article  CAS  Google Scholar 

  10. T. Gulder, M. Freeman, J. Piel, The catalytic diversity of multimodular polyketide synthases: natural product biosynthesis beyond textbook assembly rules. Top. Curr. Chem. 1–53 (2011)

    Google Scholar 

  11. D.C. Gay et al., A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure 22, 444–451 (2014)

    Article  CAS  Google Scholar 

  12. C. Sanchez, L.C. Du, D.J. Edwards, M.D. Toney, B. Shen, Cloning and characterisation of a phosphopantetheinyl transferase from Streptomyces verticillus ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin. Chem. Biol. 8, 725–738 (2001)

    Article  CAS  Google Scholar 

  13. K. Jensen et al., Polyketide proofreading by an acyltransferase-like enzyme. Chem. Biol. 19, 329–339 (2012)

    Article  CAS  Google Scholar 

  14. A.T. Keatinge-Clay, The structures of type I polyketide synthases. Nat. Prod. Rep. 29, 1050–1073 (2012)

    Article  CAS  Google Scholar 

  15. Y.-M. Zhang, J. Hurlbert, S.W. White, C.O. Rock, Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae. J. Biol. Chem. 281, 17390–17399 (2006)

    Article  CAS  Google Scholar 

  16. T. Hochmuth, J. Piel, Polyketide synthases of bacterial symbionts in sponges- Evolution-based applications in natural products research. Phytochemistry 70, 1841–1849 (2009)

    Article  CAS  Google Scholar 

  17. P.J. Bracher, P.W. Snyder, B.R. Bohall, G.M. Whitesides, The relative rates of thiol-thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Origins Life Evol. B 41, 399–412 (2011)

    Article  CAS  Google Scholar 

  18. A. Witkowski, A.K. Joshi, Y. Lindqvist, S. Smith, Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38, 11643–11650 (1999)

    Article  CAS  Google Scholar 

  19. A. Witkowski, A.K. Joshi, S. Smith, Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 41, 10877–10887 (2002)

    Article  CAS  Google Scholar 

  20. M.D. Lane, J. Moss, S.E. Polakis, Acetyl coenzyme A carboxylase. Curr. Top. Cell. Reg. 8, 139–195 (1974)

    Article  CAS  Google Scholar 

  21. J. Moldenhauer, X.H. Chen, R. Borriss, J. Piel, Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew. Chem. Int. Ed. 46, 8195–8197 (2007)

    Article  CAS  Google Scholar 

  22. S. Dutta et al., Structure of a modular polyketide synthase. Nature 510, 512–517 (2014)

    Article  CAS  Google Scholar 

  23. J.R. Whicher et al., Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510, 560–564 (2014)

    Article  CAS  Google Scholar 

  24. P.F. Leadlay, Structural biology: Enzyme assembly line pictured. Nature 510, 482–483 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Jenner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenner, M. (2016). Substrate Specificity of Ketosynthase Domains Part III: Elongation-Based Substrate Specificity. In: Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-32723-5_6

Download citation

Publish with us

Policies and ethics