Skip to main content

Introduction

  • Chapter
  • First Online:
  • 682 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The realm of natural products and their derivatives has provided the most successful source of bioactive drug molecules for generations Mishra, Tiwari, Eur J Med Chem 46:4769–4807, 2011, [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.B. Mishra, V.K. Tiwari, Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46, 4769–4807 (2011)

    Article  CAS  Google Scholar 

  2. G.M. Cragg, D.J. Newman, Biodiversity: a continuing source of novel drug leads. Pure Appl. Chem. 77, 7–24 (2005)

    CAS  Google Scholar 

  3. B. Spellberg, J.H. Powers, E.P. Brass, L.G. Miller, J.E. Edwards, Trends in antimicrobial drug development: implications for the future. Clin. Infect. Dis. 38, 1279–1286 (2004)

    Article  CAS  Google Scholar 

  4. M. Leeb, Antibiotics: a shot in the arm. Nature 431, 892–893 (2004)

    Article  CAS  Google Scholar 

  5. S.G. Van Lanen, B. Shen, Microbial genomics for the improvement of natural product discovery. Curr. Opin. Microbiol. 9, 252–260 (2006)

    Article  CAS  Google Scholar 

  6. D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007)

    Article  CAS  Google Scholar 

  7. D.J. Newman, G.M. Cragg, K.M. Snader, The influence of natural products upon drug discovery. Nat. Prod. Rep. 17, 215–234 (2000)

    Article  CAS  Google Scholar 

  8. C. Hertweck, Hidden biosynthetic treasures brought to light. Nat. Chem. Biol. 5, 450–452 (2009)

    Article  CAS  Google Scholar 

  9. C. Hertweck, The Biosynthetic Logic of Polyketide Diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009)

    Article  CAS  Google Scholar 

  10. S. Smith, S.C. Tsai, The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24, 1041–1072 (2007)

    Article  CAS  Google Scholar 

  11. J.N. Copp, B.A. Neilan, The phosphopantetheinyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria. Appl. Environ. Microbiol. 72, 2298–2305 (2006)

    Article  CAS  Google Scholar 

  12. C. Khosla, Structures and mechanisms of polyketide synthases. J. Org. Chem. 74, 6416–6420 (2009)

    Article  CAS  Google Scholar 

  13. M.A. Fischbach, C.T. Walsh, Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006)

    Article  CAS  Google Scholar 

  14. T. Nguyen et al., Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008)

    Article  CAS  Google Scholar 

  15. J. Piel, Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27, 996–1047 (2010)

    Article  CAS  Google Scholar 

  16. L. Du, L. Lou, PKS and NRPS release mechanisms. Nat. Prod. Rep. 27, 255–278 (2010)

    Article  CAS  Google Scholar 

  17. J. Staunton, K.J. Weissman, Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001)

    Article  CAS  Google Scholar 

  18. B. Shen, Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003)

    Article  CAS  Google Scholar 

  19. Y. Abe et al., Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol. Genet. Genomics 267, 636–646 (2002)

    Article  CAS  Google Scholar 

  20. K.J. Weissman, Introduction to polyketide biosynthesis. Methods Enzymol.: Complex Enzym. Microb. Nat. Prod. Biosynth. Part B: Polyketides Aminocoumarins Carbohydr. 459, 3–16 (2009)

    CAS  Google Scholar 

  21. L. Katz, The DEBS paradigm for type I modular polyketide synthases and beyond. Methods Enzymol.: Complex Enzym. Microb. Nat. Prod. Biosynth. Part B: Polyketides Aminocoumarins Carbohydr. 459, 113–142 (2009)

    CAS  Google Scholar 

  22. C. Khosla, Y. Tang, A.Y. Chen, N.A. Schnarr, D.E. Cane, Structure and mechanism of the 6-deoxyerythronolide B synthase. Ann. Rev. Biochem. 76, 195–221 (2007)

    Google Scholar 

  23. D.A. Hopwood, Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 2465–2497 (1997)

    Article  CAS  Google Scholar 

  24. G. Yadav, R.S. Gokhale, D. Mohanty, Towards prediction of metabolic products of polyketide synthases: an In Silico analysis. PLoS Comput. Biol. 5, e1000351 (2009)

    Google Scholar 

  25. Y.Q. Cheng, G.L. Tang, B. Shen, Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc. Natl. Acad. Sci. USA 100, 3149–3154 (2003)

    Article  CAS  Google Scholar 

  26. J. Piel, A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99, 14002–14007 (2002)

    Article  CAS  Google Scholar 

  27. T. Gulder, M. Freeman, J. Piel, The catalytic diversity of multimodular polyketide synthases: natural product biosynthesis beyong textbook assembly rules. Top. Curr. Chem. 1–53 (2011)

    Google Scholar 

  28. J. Piel, D.Q. Hui, N. Fusetani, S. Matsunaga, Targeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ. Microbiol. 6, 921–927 (2004)

    Article  CAS  Google Scholar 

  29. T. Hochmuth, J. Piel, Polyketide synthases of bacterial symbionts in sponges—evolution-based applications in natural products research. Phytochemistry 70, 1841–1849 (2009)

    Article  CAS  Google Scholar 

  30. H. Jenke-Kodama, A. Sandmann, R. Muller, E. Dittmann, Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evolut. 22, 2027–2039 (2005)

    Article  CAS  Google Scholar 

  31. J.P. Huelsenbeck, F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)

    Article  CAS  Google Scholar 

  32. A. Ginolhac et al., Type I polyketide synthases may have evolved through horizontal gene transfer. J. Mol. Evolut. 60, 716–725 (2005)

    Article  CAS  Google Scholar 

  33. C. Hertweck, A. Luzhetskyy, Y. Rebets, A. Bechthold, Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24, 162–190 (2007)

    Article  CAS  Google Scholar 

  34. S. Okamoto, T. Taguchi, K. Ochi, K. Ichinose, Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster. Chem. Biol. 16, 226–236 (2009)

    Article  CAS  Google Scholar 

  35. D. Yu, F. Xu, J. Zeng, J. Zhan, Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64, 285–295 (2012)

    Article  CAS  Google Scholar 

  36. M.B. Austin, A.J.P. Noel, The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003)

    Article  CAS  Google Scholar 

  37. C.T. Walsh, R.V.O. Brien, C. Khosla, Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 7098–7124 (2013)

    Article  CAS  Google Scholar 

  38. R. Finking, M.A. Marahiel, Biosynthesis of nonribosomal peptides. Ann. Rev. Microbiol. 58, 453–488 (2004)

    Article  CAS  Google Scholar 

  39. S.A. Sieber, M.A. Marahiel, Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105, 715–738 (2005)

    Article  CAS  Google Scholar 

  40. H.W. Chen, S. O’Connor, D.E. Cane, C.T. Walsh, Epothilone biosynthesis: assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit. Chem. Biol. 8, 899–912 (2001)

    Article  CAS  Google Scholar 

  41. T.L. Schneider, B. Shen, C.T. Walsh, Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42, 9722–9730 (2003)

    Article  CAS  Google Scholar 

  42. D.B. Stein, U. Linne, M.A. Marahiel, Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. FEBS J. 272, 4506–4520 (2005)

    Article  CAS  Google Scholar 

  43. H. Motamedi, A. Shafiee, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur. J. Biochem. 256, 528–534 (1998)

    Article  CAS  Google Scholar 

  44. L. Tang et al., Cloning and heterologous expression of the epothilone gene cluster. Science 287, 640–642 (2000)

    Article  CAS  Google Scholar 

  45. P.S. Patel et al., Bacillaene, a novel inhibitor of prokaryotic protein-synthesis produced by Bacillus subtilis - Production, taxonomy, isolation, physicochemical characterisation and biological activity. J. Antibiot. 48, 997–1003 (1995)

    Article  CAS  Google Scholar 

  46. C. Scotti et al., A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130, 65–71 (1993)

    Article  CAS  Google Scholar 

  47. P.D. Straight, M.A. Fischbach, C.T. Walsh, D.Z. Rudner, R. Kolter, A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 104, 305–310 (2007)

    Article  CAS  Google Scholar 

  48. J. Moldenhauer, X.H. Chen, R. Borriss, J. Piel, Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew. Chem. Int. Ed. 46, 8195–8197 (2007)

    Article  CAS  Google Scholar 

  49. J. Moldenhauer et al., The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: direct evidence for beta, gamma dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49, 1465–1467 (2010)

    Article  CAS  Google Scholar 

  50. K. Jensen et al., Polyketide proofreading by an acyltransferase-like enzyme. Chem. Biol. 19, 329–339 (2012)

    Article  CAS  Google Scholar 

  51. C.T. Calderone, W.E. Kowtoniuk, N.L. Kelleher, C.T. Walsh, P.C. Dorrestein, Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 103, 8977–8982 (2006)

    Article  CAS  Google Scholar 

  52. R.H. Cichewicz, F.A. Valeriote, P. Crews, Psymberin, a potent sponge-derived cytotoxin from Psammocinia distantly related to the pederin family. Org. Lett. 6, 1951–1954 (2004)

    Article  CAS  Google Scholar 

  53. X. Jiang, N. Williams, J.K. De Brabander, Synthesis of psymberin analogues: probing a functional correlation with the pederin/mycalamide family of natural products. Org. Lett. 9, 227–230 (2007)

    Article  CAS  Google Scholar 

  54. K.M. Fisch et al., Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat. Chem. Biol. 5, 494–501 (2009)

    Article  CAS  Google Scholar 

  55. P. Pöplau, S. Frank, B.I. Morinaka, J. Piel, An Enzymatic domain for the formation of cyclic ethers in complex polyketides. Angew. Chem. Int. Ed. 50, 13215–13218 (2013)

    Article  CAS  Google Scholar 

  56. A.T. Keatinge-Clay, The structures of type I polyketide synthases. Nat. Prod. Rep. 29, 1050–1073 (2012)

    Article  CAS  Google Scholar 

  57. Y.Y. Tang, C.Y. Kim, D.E. Mathews, II, Cane, C. Khosla, The 2.7-angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl. Acad. Sci. USA 103, 11124–11129 (2006)

    Google Scholar 

  58. G. Pappenberger et al., Structure of the human fatty acid synthase KS-MAT didomain as a framework for inhibitor design. J. Mol. Biol. 397, 508–519 (2010)

    Article  CAS  Google Scholar 

  59. J.G. Olsen, A. Kadziola, P. von Wettstein-Knowles, M. Siggaard-Andersen, S. Larsen, Structures of beta-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery. Structure 9, 233–243 (2001)

    Article  CAS  Google Scholar 

  60. J. Wang et al., Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006)

    Article  CAS  Google Scholar 

  61. A. Witkowski, A.K. Joshi, Y. Lindqvist, S. Smith, Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38, 11643–11650 (1999)

    Article  CAS  Google Scholar 

  62. A. Witkowski, A.K. Joshi, S. Smith, Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 41, 10877–10887 (2002)

    Article  CAS  Google Scholar 

  63. Y.-M. Zhang, J. Hurlbert, S.W. White, C.O. Rock, Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae. J. Biol. Chem. 281, 17390–17399 (2006)

    Article  CAS  Google Scholar 

  64. K. Watanabe, C.C.C. Wang, C.N. Boddy, D.E. Cane, C. Khosla, Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J. Biol. Chem. 278, 42020–42026 (2003)

    Article  CAS  Google Scholar 

  65. J.Q. Wu, K. Kinoshita, C. Khosla, D.E. Cane, Biochemical analysis of the substrate specificity of the beta-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase. Biochemistry 43, 16301–16310 (2004)

    Article  CAS  Google Scholar 

  66. J.E. Nixon, G.R. Putz, J.W. Porter, Synthesis of triacetic acid lactone by pigeon liver fatty acid synthase complex. J. Biol. Chem. 243, 5471–5478 (1968)

    CAS  Google Scholar 

  67. P.F. Long et al., Engineering specificity of starter unit selection by the erythromycin-producing polyketide synthase. Mol. Microbiol. 43, 1215–1225 (2002)

    Article  CAS  Google Scholar 

  68. G.B. Kresze, L. Steber, F. Lynen, D. Oesterhelt, Reaction of yeast fatty-acid synthetase with iodoacetamide. 3. Malonyl-coenzyme-a decarboxylase as product of reaction of fatty-acid synthetase with iodoacetamide. Eur. J. Biochem. 79, 191–199 (1977)

    Article  CAS  Google Scholar 

  69. D. Song et al., Alternative method for site-directed mutagenesis of complex polyketide synthase in Streptomyces albus JA3453. Acta Biochim. Biophys. Sinica 40, 319–326 (2008)

    Article  CAS  Google Scholar 

  70. L. Serre, E.C. Verbree, Z. Dauter, A.R. Stuitje, Z.S. Derewenda, The Escherichia coli malonyl-CoA-acyl carrier protein transacylase at 1.5-angstrom resolution—crystal-structure of a fatty-acid synthase component. J. Biol. Chem. 270, 12961–12964 (1995)

    Article  CAS  Google Scholar 

  71. C. Oefner, H. Schulz, A. D’Arcy, G.E. Dale, Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. Acta Crystallogr. Sect. D-Biol. Crystallogr. 62, 613–618 (2006)

    Article  CAS  Google Scholar 

  72. A.F.A. Marsden et al., Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263, 378–380 (1994)

    Article  CAS  Google Scholar 

  73. Y.Q. Cheng, J.M. Coughlin, S.K. Lim, B, Shen, in Complex Enzymes in Microbial Natural Product Biosynthesis, Part B: Polyketides, Aminocoumarins and Carbohydrates. Methods in Enzymology, vol. 459 (Elsevier Academic Press Inc., New York, 2009), pp. 165–186

    Google Scholar 

  74. G. Yadav, R.S. Gokhale, B. Mohanty, Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J. Mol. Biol. 328, 335–363 (2003)

    Article  CAS  Google Scholar 

  75. F.T. Wong, X. Jin, I.I. Mathews, D.E. Cane, C. Khosla, Structure and mechanism of the trans-acting acyltransferase from the disorazole synthase. Biochemistry 50, 6539–6548 (2011)

    Article  CAS  Google Scholar 

  76. R.H. Lambalot et al., A new enzyme superfamily—the phosphopantetheinyl transferases. Chem. Biol. 3, 923–936 (1996)

    Article  CAS  Google Scholar 

  77. B.N. Wu, Y.M. Zhang, Z. Jie, C.O. Rock, Key residues responsible for acyl carrier protein (ACP) and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction. J. Biol. Chem. 278, 52935–52943 (2004)

    Google Scholar 

  78. K.J. Weissman, H. Hong, B. Popovic, F. Meersman, Evidence for a protein-protein interaction motif on an acyl carrier protein domain from a modular polyketide synthase. Chem. Biol. 13, 625–636 (2006)

    Article  CAS  Google Scholar 

  79. V.Y. Alekseyev, C.W. Liu, D.E. Cane, J.D. Puglisi, C. Khosla, Solution structure and proposed domain-domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. Protein Sci. 16, 2093–2107 (2007)

    Article  CAS  Google Scholar 

  80. S.S. Chandran, H.G. Menzella, J.R. Carney, D.V. Santi, Activating hybrid modular interfaces in synthetic polyketide synthases by cassette replacement of ketosynthase domains. Chem. Biol. 13, 469–474 (2006)

    Article  CAS  Google Scholar 

  81. A. Roujeinikova et al., Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates. J. Mol. Biol. 365, 135–145 (2007)

    Article  CAS  Google Scholar 

  82. A. Busche et al., Characterisation of molecular interactions between ACP and halogenase domains in the Curacin A polyketide synthase. ACS Chem. Biol. 7, 377–385 (2012)

    Article  CAS  Google Scholar 

  83. R. Castonguay, W. He, A.Y. Chen, C. Khosla, D.E. Cane, Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. J. Am. Chem. Soc. 129, 13758–13769 (2007)

    Article  CAS  Google Scholar 

  84. A.T. Keatinge-Clay, R.M. Stroud, The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. Structure 14, 737–748 (2006)

    Article  CAS  Google Scholar 

  85. A.T. Keatinge-Clay, A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol. 14, 898–908 (2007)

    Article  CAS  Google Scholar 

  86. J. Zheng, C.A. Taylor, S.K. Piasecki, A.T. Keatinge-Clay, Structural and functional analysis of a-type ketoreductases from the amphotericin modular polyketide synthase. Structure 18, 913–922 (2010)

    Article  CAS  Google Scholar 

  87. A. Keatinge-Clay, Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol. 384, 941–953 (2008)

    Article  CAS  Google Scholar 

  88. D.L. Akey et al., Crystal structures of dehydratase domains from the curacin polyketide biosynthetic pathway. Structure 18, 94–105 (2010)

    Article  CAS  Google Scholar 

  89. B. Persson, J. Hedlund, H. Jornvall, The MDR superfamily. Cell. Mol. Life Sci. 65, 3879–3894 (2008)

    Article  CAS  Google Scholar 

  90. J. Zheng, D.C. Gay, B. Demeler, M.A. White, A.T. Keatinge-Clay, Divergence of multimodular polyketide synthases revealed by a didomain structure. Nat. Chem. Biol. 8, 615–621 (2012)

    Article  CAS  Google Scholar 

  91. B. Chakravarty, Z.W. Gu, S.S. Chirala, S.J. Wakil, F.A. Quiocho, Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. USA 101, 15567–15572 (2004)

    Article  CAS  Google Scholar 

  92. S.C. Tsai et al., Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. Proc. Natl. Acad. Sci. USA 98, 14808–14813 (2001)

    Article  CAS  Google Scholar 

  93. J. Brink et al., Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 99, 138–143 (2002)

    Article  CAS  Google Scholar 

  94. T. Maier, S. Jenni, N. Ban, Architecture of mammalian fatty acid synthase at 4.5 angstrom resolution. Science 311, 1258–1262 (2006)

    Article  CAS  Google Scholar 

  95. N.A. Schnarr, A.Y. Chen, D.E. Cane, C. Khosla, Analysis of covalently bound polyketide intermediates on 6-deoxyerythronolide B synthase by tandem proteolysis-mass spectrometry. Biochemistry 44, 11836–11842 (2005)

    Article  CAS  Google Scholar 

  96. R.J. Cox et al., Post-translational modification of heterologously expressed Streptomyces type II polyketide synthase acyl carrier proteins. FEBS Lett. 405, 267–272 (1997)

    Article  CAS  Google Scholar 

  97. J.J. Thompson, Rays of positive electricity and their application to chemical analysis (Longmans, London, 1913)

    Google Scholar 

  98. G. Squires, Francis Aston and the mass spectrograph. Dal. Trans. 3893–3899, (1998)

    Google Scholar 

  99. E. Hoffman, V. Stroobant, Mass Spectrometry: Principles and Applications (Wiley, England, 2007)

    Google Scholar 

  100. J.A. Loo, Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)

    Article  CAS  Google Scholar 

  101. J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass-spectrometry of large biomolecules. Science 246, 64–71 (1989)

    Article  CAS  Google Scholar 

  102. G. Taylor, Disintegration of water drops in electric field. Proc. R. Soc. A 280, 383–397 (1964)

    Article  Google Scholar 

  103. R.B Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications: Fundamentals, Instrumentation, and Applications, 2nd edn (Wiley-Blackwell, UK, 2010)

    Google Scholar 

  104. J.H. Gross, Mass Spectrometry: A Textbook. 2nd edn (Springer, Berlin, 2004)

    Google Scholar 

  105. A. Gomez, K.Q. Tang, Charge and fission of droplets in electrostatic sprays. Phys. Fluids 6, 404–414 (1994)

    Article  CAS  Google Scholar 

  106. P. Kebarle, U.H. Verkerk, Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28, 898–917 (2009)

    Article  CAS  Google Scholar 

  107. M. Dole, L.L. Mack, R.L. Hines, Molecular beams of macroions. J. Chem. Phys. 49, 2240 (1968)

    Article  CAS  Google Scholar 

  108. J.V. Iribarne, B.A. Thomson, Evaporation of small ions from charged droplets. J. Chem. Phys. 64, 2287–2294 (1976)

    Article  CAS  Google Scholar 

  109. M. Wilm, M. Mann, Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996)

    Article  CAS  Google Scholar 

  110. B.T. Ruotolo et al., Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005)

    Article  CAS  Google Scholar 

  111. C. Uetrecht et al., High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl. Acad. Sci. USA 105, 9216–9220 (2008)

    Article  CAS  Google Scholar 

  112. W.Paul, H. Steinwedel, vol. 8 (Zeitschrift fur Naturforschung, 1953), pp. 448–450

    Google Scholar 

  113. W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150–1157 (1955)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Jenner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenner, M. (2016). Introduction. In: Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-32723-5_1

Download citation

Publish with us

Policies and ethics