Skip to main content

Manipulatives, Diagrams, and Mathematics: A Framework for Future Research on Virtual Manipulatives

  • Chapter
  • First Online:
  • 1922 Accesses

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 7))

Abstract

Our objective in this chapter is to present a framework that can be used as a guide for designers of virtual manipulatives and for researchers who study their effects on student learning in mathematics. Because a significant amount of research has been devoted to the effects of concrete manipulatives on student learning, the crux of the framework is based on the existing literature in this area. Specifically, the framework consists of three interrelated components that align with the research on students’ learning with external representations: the surface features of the representations themselves, the pedagogical contexts that support students’ meaning making, and the students’ perceptions and interpretations of the representations. Where applicable, we integrate the research on virtual manipulatives to support the validity of the framework itself and its applicability for researchers of virtual mathematics tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrien, E., Duponsel, N., & Osana, H. P. (2015). Effects of explanations and presentation order of manipulatives and written symbols in second-grade addition instruction. Presentation at the annual meeting of the American Educational Research Association, Chicago, IL.

    Google Scholar 

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.

    Article  Google Scholar 

  • Ambrose, R. C. (2002). Are we overemphasizing manipulatives in the primary grades to the detriment of girls? Teaching Children Mathematics, 9(1), 16–21. Retrieved from www.nctm.org/resources/nea/TCM2002-09-16a.pdf

  • Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator, 16(14–18), 46–47.

    Google Scholar 

  • Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University Press.

    Google Scholar 

  • Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics Education, 24(4), 294–323. doi:10.2307/749464.

    Article  Google Scholar 

  • Bell, P., & Davis, E. A. (2000). Designing Mildred: Scaffolding students’ reflection and argumentation using a cognitive software guide. In B. Fishman, & S. O’Connor-Divelbiss (Eds.), Fourth International Conference of the Learning Sciences (pp. 142–149). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. Washington, DC: National Research Council.

    Google Scholar 

  • Burns, B. A., & Hamm, E. M. (2011). A comparison of concrete and virtual manipulative use in third- and fourth-grade mathematics. School Science and Mathematics, 111(6), 256.

    Article  Google Scholar 

  • Callanan, M. A., Jipson, J. L., & Soennichsen, M. S. (2002). Maps, globes, and videos: Parent-child conversations about representational objects. In S. G. Paris (Ed.), Perspectives on children’s object-centered learning in museums (pp. 261–283). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105, 380–400. doi:10.1037/a0031084.

    Article  Google Scholar 

  • Carpenter, K. K. (2013). Strategy instruction in early childhood math software: Detecting and teaching single-digit addition strategies (Doctoral Dissertation, Columbia University). Retrieved from http://academiccommons.columbia.edu/catalog/ac:160522

  • Carraher, D. W., & Schliemann, A. D. (2002). Early algebra and algebraic reasoning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (Vol. II, pp. 669–705). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Chao, S.-J., Stigler, J. W., & Woodward, J. A. (2000). The effects of physical materials on Kindergartners’ learning of number concepts. Cognition and Instruction, 18(3), 285–316. doi:10.1207/S1532690XCI1803_1.

    Article  Google Scholar 

  • Clements, D. H. (1999). “Concrete” manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.

    Article  Google Scholar 

  • Corbiere, D. (2003). Digi-block companion to everyday mathematics: Grade 1. Digi-Block, Inc.

    Google Scholar 

  • DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238, 1556–1557. doi:10.1126/science.2446392.

    Article  Google Scholar 

  • DeLoache, J. S. (1989). Young children’s understanding of the correspondence between a scale model and a larger space. Cognitive Development, 4, 121–129. doi:10.1016/0885-2014(89)90012-9.

    Article  Google Scholar 

  • DeLoache, J. S. (1995). Early understanding and use of symbols: The model model. Current Directions in Psychological Science, 4(4), 109–113. doi:10.1111/1467-8721.ep10772408.

    Article  Google Scholar 

  • DeLoache, J. S. (2000). Dual representation and young children’s use of scale models. Child Development, 71, 329–338. doi:10.1111/1467-8624.00148.

    Article  Google Scholar 

  • DeLoache, J. S., & Sharon, T. (2005). Symbols and similarity: You can get too much of a good thing. Journal of Cognition and Development, 6(1), 33–49. doi:10.1207/s15327647jcd0601_3.

    Article  Google Scholar 

  • DeLoache, J. S., Miller, K. F., & Rosengren, K. S. (1997). The credible shrinking room: Very young children’s performance with symbolic and nonsymbolic relations. Psychological Science, 8(4), 308–313.

    Article  Google Scholar 

  • DeLoache, J. S., Peralta de Mendoza, O. A., & Anderson, K. N. (1999). Multiple factors in early symbol use instructions, similarity, and age in understanding a symbol-referent relation. Cognitive Development, 14(2), 299–312. doi:10.1016/S0885-2014(99)00006-4.

    Article  Google Scholar 

  • Dienes, Z. P. (1963). An experimental study of mathematics learning. London, England: Hutchinson of London.

    Google Scholar 

  • diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22, 293–331.

    Article  Google Scholar 

  • diSessa, A. A., & Sherin, B. L. (2000). Meta-representation: An introduction. Mathematical Behavior, 19, 385–398.

    Article  Google Scholar 

  • Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations concerning the problem of representation. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 109–122). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Englard, L. (2010). Raise the bar on problem solving. Teaching Children Mathematics, 17(3), 156–163.

    Google Scholar 

  • English, L. D. (2004). Mathematical and analogical reasoning. In L. English (Ed.), Mathematical and analogical reasoning of young learners (pp. 1–22). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Fujimura, N. (2001). Facilitating children’s proportional reasoning: A model of reasoning processes and effects of intervention on strategy change. Journal of Educational Psychology, 93, 589–603. doi:10.1037/0022-0663.93.3.589.

    Article  Google Scholar 

  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26, 9–25.

    Article  Google Scholar 

  • Gelman, S. A., Chesnick, R. J., & Waxman, S. R. (2005). Mother-child conversations about pictures and objects: Referring to categories and individuals. Child Development, 76(6), 1129–1143.

    Article  Google Scholar 

  • Gentner, D., & Colhoun, J. (2010). Analogical processes in human thinking and learning. In B. M. Glatzeder, V. Goel, & A. von Müller (Eds.), Toward a theory of thinking: Building blocks for a conceptual framework (pp. 35–48). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52, 45–56.

    Article  Google Scholar 

  • Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95, 393–408.

    Article  Google Scholar 

  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38.

    Article  Google Scholar 

  • Ginsburg, H. P., Jamalian, A., & Creighan, S. (2013). Cognitive guidelines for the design and evaluation of early mathematics software: The example of MathemAntics. In L. D. English, & J. T. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 83–120). Springer, Netherlands. Retrieved from http://link.springer.com/chapter/10.1007/978-94-007-6440-8_6

  • Glenberg, A. M., Jaworski, B., Rischal, M., & Levin, J. R. (2007). What brains are for: Action, meaning, and reading comprehension. In D. McNamara (Ed.), Reading comprehension strategies: Theories, interventions, and technologies (pp. 221–240). Mahwah, NJ: Lawrence Erlbaum Publishers.

    Google Scholar 

  • Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. The Journal of Mathematical Behavior, 17, 137–165. doi:10.1016/S0364-0213(99)80056-1.

    Article  Google Scholar 

  • Goldstone, R. L., & Day, S. B. (2012). Introduction to “New Conceptualizations of Transfer of Learning”. Educational Psychologist, 47(3), 149–152.

    Article  Google Scholar 

  • Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptive systems. Cognitive Psychology, 46, 414–466. doi:10.1016/S0010-0285(02)00519-4.

    Article  Google Scholar 

  • Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. Journal of the Learning Sciences, 14, 69–110.

    Article  Google Scholar 

  • Goswami, U. (2004). Commentary: Analogical reasoning and mathematical development. In L. English (Ed.), Mathematical and analogical reasoning of young learners (pp. 169–186). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Gravemeijer, K. (2002). Preamble: From models to modeling. In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 7–22). The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gürbüz, R. (2010). The effect of activity-based instruction on conceptual development of seventh grade students in probability. International Journal of Mathematical Education in Science and Technology, 41, 743–767. doi:10.1080/00207391003675158.

    Article  Google Scholar 

  • Hiebert, J. (1992). Mathematical, cognitive, and instructional analyses of decimal fractions. In G. Leinhardt, R. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 283–322). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Hiebert, J., & Wearne, D. (1992). Links between teaching and learning place value with understanding in first grade. Journal for Research in Mathematics Education, 23, 98–122. doi:10.2307/749496.

    Article  Google Scholar 

  • Hiebert, J., Carpenter, T. R., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., et al. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth, NH: Heinemann.

    Google Scholar 

  • Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Oxford, England: Basil Blackwell.

    Google Scholar 

  • Kamii, C., Lewis, B. A., & Kirkland, L. (2001). Manipulatives: when are they useful? Journal of Mathematical Behavior, 20, 21–31. doi:10.1016/S0732-3123(01)00059-1.

    Article  Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. (2009). Transfer of mathematical knowledge: The portability of generic instantiations. Child Development Perspectives, 3(3), 151–155. doi:10.1111/j.1750-8606.2009.00096.x.

    Article  Google Scholar 

  • Kim, R., & Albert, L. R. (2014). The history of base-ten-blocks: Why and who made base-ten-blocks? Mediterranean Journal of Social Sciences, 5, 356–365.

    Google Scholar 

  • Ladel, S., & Kortenkamp, U. (2013). An activity-theoretic approach to multi-touch tools in early maths learning. The International Journal for Technology in Mathematics Education, 20(1). Retrieved from http://www.tech.plym.ac.uk/research/mathematics_education/field%20of%20work/ijtme/volume_20/number_one.html⋕one

  • Lee, C.-Y., & Yuan, Y. (2010). Gender differences in the relationship between Taiwanese adolescents’ mathematics attitudes and their perceptions toward virtual manipulatives. International Journal of Science and Mathematics Education, 8, 937–950.

    Article  Google Scholar 

  • Markman, A. B. (1999). Knowledge representation. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Martin, T. (2009). A theory of physically distributed learning: How external environments and internal states interact in mathematics learning. Child Development Perspectives, 3(3), 140–144.

    Article  Google Scholar 

  • Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting physical environments in the development of fraction concepts. Cognitive Science, 29, 587–625.

    Article  Google Scholar 

  • Marzolf, D. P., & DeLoache, J. S. (1994). Transfer in young children’s understanding of spatial representations. Child Development, 65(1), 1–15. doi:10.2307/1131361.

    Article  Google Scholar 

  • Mayer, R. E. (2011). Instruction based on visualizations. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 427–445). New York, NY: Routledge.

    Google Scholar 

  • McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19(2), 171–184.

    Article  Google Scholar 

  • Moyer, P. S. (2001). Are we having fun yet? How teachers use manipulatives to teach mathematics. Educational Studies in Mathematics, 47, 175–197.

    Article  Google Scholar 

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8, 372–377.

    Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3).

    Google Scholar 

  • Moyer-Packenham, P., Baker, J., Westenskow, A., Anderson, K., Shumway, J., Rodzon, K., et al. (2013). A study comparing virtual manipulatives with other instructional treatments in third- and fourth-grade classrooms. Journal of Education, 193(2), 25–39.

    Google Scholar 

  • Moyer-Packenham, P. S., Shumway, J. F., Bullock, E., Tucker, S. I., Anderson-Pence, K. L., & Westenskow, A. (2015). Young children’s learning performance and efficiency when using virtual manipulative mathematics iPad apps. Journal of Computers in Mathematics and Science Teaching, 34(1), 41–69.

    Google Scholar 

  • Namukasa, I. K., Stanley, D., & Tuchtie, M. (2009). Virtual manipulative materials in secondary mathematics: A theoretical discussion. The Journal of Computers in Mathematics and Science Teaching, 28(3), 277.

    Google Scholar 

  • Ng, S. F., & Lee, K. (2009). Model method: A visual tool to support algebra word problem solving at the primary level. In K. Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong, & S. F. Ng (Eds.), Mathematics education: The Singapore journey (pp. 169–203). Singapore: World Scientific.

    Google Scholar 

  • Nührenbörger, M., & Steinbring, H. (2008). Manipulatives as tools in mathematics teacher education. In D. Tirosh & T. Wood (Eds.), International handbook of mathematics teacher education: Vol. 2: Tools and processes in mathematics teacher education (pp. 157–181). Rotterdam: Sense.

    Google Scholar 

  • Osana, H. P., & Pitsolantis, N. (2013). Addressing the struggle to link form and understanding in fractions instruction. British Journal of Educational Psychology, 83, 29–56.

    Article  Google Scholar 

  • Osana, H. P., & Pitsolantis, N. (2015). Supporting Kindergarten children’s dual representation: Meaningful use of mathematics manipulatives. Paper presented at the American Educational Research Association (AERA), Washington, DC.

    Google Scholar 

  • Osana, H. P., Przednowek, K., Cooperman, A., & Adrien, E. (2013). Making the most of math manipulatives: Play is not the answer. Presented at the annual meeting of the American Educational Research Association, San Francisco, CA.

    Google Scholar 

  • Osana, H. P., Przednowek, K., Adrien, E., & Cooperman, A. (2014, May). Assessing dual representation in mathematics. In C. Sowinski (Chair), Math development: Measures and methodologies. Symposium Conducted at the Development 2014: A Canadian Conference on Developmental Psychology, Ottawa, Canada.

    Google Scholar 

  • Ozel, S., Ozel, Z. E. Y., & Cifuentes, L. D. (2014). Effectiveness of an online manipulative tool and students’ technology acceptances. International Journal of Educational Studies in Mathematics, 1(1), 1–15.

    Article  Google Scholar 

  • Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 259–302). Erlbaum.

    Google Scholar 

  • Parker, T. H., & Baldridge, S. J. (2008). Elementary mathematics for teachers. Okemos, USA: Sefton-Ash Publishing.

    Google Scholar 

  • Perkins, D. N., & Salomon, G. (2012). Knowledge to go: A motivational and dispositional view of transfer. Educational Psychologist, 47(3), 248–258.

    Article  Google Scholar 

  • Petersen, L. A., & McNeil, N. M. (2013). Effects of perceptually rich manipulatives on preschoolers’ counting performance: Established knowledge counts. Child Development, 84, 1020–1033.

    Article  Google Scholar 

  • Pimm, D. (1995). Symbols and meanings in school mathematics. New York, NY: Routledge.

    Book  Google Scholar 

  • Przednowek, K., Osana, H. P., Cooperman, A., & Adrien, E. (2013). Introducing manipulatives: To play or not to play. In M. V. Martinez & A. C. Superfine (Eds.), Proceedings of the Thirty-Fifth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (p. 329). Chicago, IL: University of Illinois at Chicago.

    Google Scholar 

  • Puchner, L., Taylor, A., O’Donnell, B., & Fick, K. (2008). Teacher learning and mathematics manipulatives: A collective case study about teacher use of manipulatives in elementary and middle school mathematics lessons. School Science and Mathematics, 108(7), 313–325.

    Article  Google Scholar 

  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., & Duncan, R. G. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13, 337–386.

    Article  Google Scholar 

  • Raphael, D., & Wahlstrom, M. (1989). The influence of instructional aids on mathematics achievement. Journal for Research in Mathematics Education, 20(2), 173–190.

    Article  Google Scholar 

  • Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 3, pp. 41–95). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Reys, R. E., Lindquist, M. M., Lambdin, D. V., & Smith, N. L. (2014). Helping children learn mathematics (11th ed.). New York: Wiley.

    Google Scholar 

  • Richland, L. E. (2011). Analogy and classroom mathematics learning. In N. L. Stein & S. R. Raudenbush (Eds.), Developmental cognitive science goes to school (pp. 203–218). New York, NY: Routledge.

    Google Scholar 

  • Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94, 249–273.

    Article  Google Scholar 

  • Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematics. Educational Psychologist, 47(3), 189–203.

    Article  Google Scholar 

  • Rick, J. (2012). Proportion: a tablet app for collaborative learning. In Proceedings of the 11th International Conference on Interaction Design and Children (pp. 316–319). New York, NY, USA: ACM. doi:10.1145/2307096.2307155

  • Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology, 91, 175–189.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Koedinger, K. (2009). Iterating between lessons on concepts and procedures can improve mathematics knowledge. British Journal of Educational Psychology, 79, 1–21.

    Article  Google Scholar 

  • Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York, NY: Oxford University Press.

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2002). Building Blocks for young children’s mathematical development. Journal of Educational Computing Research, 27, 93–110.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). Building blocks and cognitive building blocks: Playing to know the world mathematically. American Journal of Play, 1, 313–337.

    Google Scholar 

  • Sedig, K., & Liang, H.-N. (2006). Interactivity of visual mathematical representations: Factors affecting learning and cognitive processes. Journal of Interactive Learning Research, 17(2), 179–212.

    Google Scholar 

  • Sedig, K., Klawe, M., & Westrom, M. (2001). Role of interface manipulation style and scaffolding on cognition and concept learning in Learnware. ACM Transactions on Computer-Human Interaction, 8, 34–59.

    Article  Google Scholar 

  • Segal, A., Tversky, B., & Black, J. (2014). Conceptually congruent actions can promote thought. Journal of Applied Research in Memory and Cognition. doi:10.1016/j.jarmac.2014.06.004

    Google Scholar 

  • Sherman, J., & Bisanz, J. (2009). Equivalence in symbolic and non-symbolic contexts: Benefits of solving problems with manipulatives. Journal of Educational Psychology, 101, 88–100. doi:10.1037/a0013156

    Article  Google Scholar 

  • Singley, K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Stigler, J. W. (1984). “Mental abacus”: The effects of abacus training on Chinese children’s mental calculation. Cognitive Psychology, 16, 145–176.

    Article  Google Scholar 

  • Suh, J., & Moyer, P. S. (2007). Developing students’ representational fluency using virtual and physical algebra balances. The Journal of Computers in Mathematics and Science Teaching, 26(2), 155–173.

    Google Scholar 

  • Suydam, M. N. (1986). Manipulative materials and achievement. Arithmetic Teacher, 33(6), 10–32.

    Google Scholar 

  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Thompson, P. W. (1994). Concrete materials and teaching for mathematical understanding. Arithmetic Teacher, 41(9), 556–558.

    Google Scholar 

  • Toth, E. E., Suthers, D. D., & Lesgold, A. M. (2002). “Mapping to know”: The effects of representational guidance and reflective assessment on scientific inquiry. Science Education, 86, 264–286.

    Article  Google Scholar 

  • Tucker, S. I., Moyer-Packenham, P. S., Boyer-Thurgood, J. M., Anderson, K. L., Shumway, J. F., Westenskow, A., et al. (2014). Literature supporting an investigation of the nexus of mathematics, strategy, and technology in second-graders’ interactions with iPad-based virtual manipulatives. In Proceedings of the 12th Annual Hawaii International Conference on Education (HICE) (pp. 2338–2346). Honolulu, Hawaii. doi:10.13140/2.1.3392.4169

  • Uttal, D. H. (2003). On the relation between play and symbolic thought: The case of mathematics manipulatives. In O. Saracho & B. Spodek (Eds.), Contemporary perspectives in early childhood (pp. 97–114). Charlotte, NC: Information Age Press.

    Google Scholar 

  • Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from visual representations: A developmental approach. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 53–72). New York, NY: Springer.

    Chapter  Google Scholar 

  • Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18, 37–54.

    Article  Google Scholar 

  • Uttal, D. H., Liu, L. L., & DeLoache, J. S. (2006). Concreteness and symbolic development. In L. Balter & C. S. Tamis-LeMonda (Eds.), Child psychology: A handbook of contemporary issues (2nd ed., pp. 167–184). Philadelphia, PA: Psychology Press.

    Google Scholar 

  • Uttal, D. H., O’Doherty, K., Newland, R., Hand, L. L., & DeLoache, J. (2009). Dual representation and the linking of concrete and symbolic representations. Child Development Perspectives, 3(3), 156–159. doi:10.1111/j.1750-8606.2009.00097.x

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625–636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena P. Osana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osana, H.P., Duponsel, N. (2016). Manipulatives, Diagrams, and Mathematics: A Framework for Future Research on Virtual Manipulatives. In: Moyer-Packenham, P. (eds) International Perspectives on Teaching and Learning Mathematics with Virtual Manipulatives. Mathematics Education in the Digital Era, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-32718-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32718-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32716-7

  • Online ISBN: 978-3-319-32718-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics