Skip to main content

The Modification of Attributes, Affordances, Abilities, and Distance for Learning Framework and Its Applications to Interactions with Mathematics Virtual Manipulatives

  • Chapter
  • First Online:
International Perspectives on Teaching and Learning Mathematics with Virtual Manipulatives

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 7))

Abstract

While extensive research has examined the outcomes of interacting with virtual manipulatives, less research has focused on constructs and relationships among constructs involved in user-tool interactions. This chapter presents the Modification of Attributes, Affordances, Abilities, and Distance (MAAAD) for Learning framework, which conceptualizes the relationships among these constructs to describe user-tool interactions, including those involving virtual manipulatives. The framework is primarily grounded in theories of representation and embodied cognition, as user-tool interactions in mathematics involve internalizing and externalizing representations through physically embodied mathematical practices. In the framework, attributes, affordance-ability relationships, and distance are interrelated, and modification of one construct contributes to modification of the other constructs. Each attribute can contribute to many affordance-ability relationships and to distance . Attribute modification can change the approach or degree of affordance access and alter the degree of distance present, which can, in turn, lead to attribute modification. This chapter illustrates the constructs and relationships among constructs that form the framework in the context of user-tool interactions in mathematics. The chapter then applies the framework to examples of children’s interactions with mathematics virtual manipulative touchscreen tablet apps . The MAAAD for Learning framework has implications and applications relevant to theory, development, implementation, and research concerning technology tools, including virtual manipulatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. http://doi.org/10.1016/j.learninstruc.2006.03.001

    Google Scholar 

  • Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286. http://doi.org/10.1080/10508406.2011.611446

    Google Scholar 

  • Attribute [Def. 5]. (2014). OED Online. Oxford: Oxford University Press. Retrieved from http://www.oed.com/view/Entry/12931

  • Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers’ development of number-sense. Digital Experiences in Mathematics Education, 1–21. http://doi.org/10.1007/s40751-015-0002-4

    Google Scholar 

  • Barendregt, W., Lindström, B., Rietz-Leppänen, E., Holgersson, I., & Ottosson, T. (2012). Development and evaluation of Fingu: A mathematics iPad game using multi-touch interaction. In H. Schelhowe (Ed.), Proceedings of the 11th international conference on interaction design and children (pp. 204–207). New York, NY: ACM. http://doi.org/10.1145/2307096.2307126

  • Bartoschek, T., Schwering, A., Li, R., & MĂĽnzer, S. (2013). Ori-Gami–An App fostering spatial competency development and spatial learning of children. In D. Vandenbroucke, B. Bucher, & J. Crompvoets (Eds.), Proceedings of the 15th AGILE International Conference on Geographic Information Science. Leuven, Belgium: Springer.

    Google Scholar 

  • Belland, B. R., & Drake, J. (2013). Toward a framework on how affordances and motives can drive different uses of scaffolds: theory, evidence, and design implications. Educational Technology Research and Development, 61(6), 903–925. http://doi.org/10.1007/s11423-013-9313-6

    Google Scholar 

  • Burlamaqui, L., & Dong, A. (2014). The use and misuse of the concept of affordance. In J. S. Gero (Ed.), Design Computing and Cognition DCC’14 (pp. 1–20). London: Springer.

    Google Scholar 

  • Byers, P., & Hadley, J. (2013). Traditional and novel modes of activity in touch screen math apps. In J. P. Hourcade, N. Sawhney, & E. Reardon (Eds.), Proceedings of the 12th International Conference on Interaction Design and Children. New York, NY: ACM.

    Google Scholar 

  • Carpenter, K. K. (2013). Strategy instruction in early childhood math software: Detecting and teaching single-digit addition strategies (Doctoral Dissertation). Columbia University. Retrieved from http://academiccommons.columbia.edu/catalog/ac:160522

  • Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2), 181–195. http://doi.org/10.1207/S15326969ECO1502_5

    Google Scholar 

  • Cook, S. W., Mitchell, Z., & Goldin-Meadows, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058. http://doi.org/10.1016/j.cognition.2007.04.010

    Google Scholar 

  • Daghestani, L. F. M. (2013). The design, implementation and evaluation of a desktop virtual reality for teaching numeracy concepts via virtual manipulatives (Doctoral Thesis). University of Huddersfield. Retrieved from http://eprints.hud.ac.uk/19037/

  • de Kirby, K. D. (2013). The development of an idealized number line: Differentiating physical inscription from mathematical object. San Francisco, CA: American Educational Research Association.

    Google Scholar 

  • Dejonckheere, P. J. N., Desoete, A., Fonck, N., Roderiguez, D., Six, L., Vermeersch, T., et al. (2014). Action-based digital tools: mathematics learning in 6-year-old children. Electronic Journal of Research in Educational Psychology, 12(1), 61–82. http://doi.org/10.14204/ejrep.32.13108

  • Dick, T. (2008). Keeping the faith: Fidelity in technological tools for mathematics education. In G. W. Blume & M. K. Heid (Eds.), Research on technology in the teaching and learning of mathematics: Syntheses and perspectives (Vol. 2, pp. 333–339). Greenwich, CT: Information Age Publishing Incorporated.

    Google Scholar 

  • DurmuĹź, S., & Karakırık, E. (2006). Virtual manipulatives in mathematics education: A theoretical framework. Turkish Online Journal of Education Technology, 5(1)

    Google Scholar 

  • Ertmer, P. A. (2005). Teacher pedagogical beliefs: The final frontier in our quest for technology integration? Educational Technology Research and Development, 53(4), 25–39. http://doi.org/10.1007/BF02504683

    Google Scholar 

  • Gaver, W. W. (1991). Technology affordances. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 79–84). New York, NY, USA: ACM. http://doi.org/10.1145/108844.108856

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Ginsburg, H. P., Jamalian, A., & Creighan, S. (2013). Cognitive guidelines for the design and evaluation of early mathematics software: The example of MathemAntics. In L. D. English & J. T. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 83–120). Dordrecht, Netherlands: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-94-007-6440-8_6

  • Goldin, G. A., & Kaput, J. M. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 397–430). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Goldin, G. A., Epstein, Y. M., Schorr, R. Y., & Warner, L. B. (2011). Beliefs and engagement structures: Behind the affective dimension of mathematical learning. ZDM, 43(4), 547–560. http://doi.org/10.1007/s11858-011-0348-z

    Google Scholar 

  • Greeno, J. G. (1994). Gibson’s affordances. Psychological Review, 101(2), 336–342. http://dx.doi.org.dist.lib.usu.edu/10.1037/0033-295X.101.2.336

    Google Scholar 

  • Hamon, A., Palanque, P., Silva, J. L., Deleris, Y., & Barboni, E. (2013). Formal description of multi-touch interactions. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (pp. 207–216). New York, NY, USA: ACM. http://doi.org/10.1145/2494603.2480311

  • Heinze, A., Star, J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. ZDM, 41(5), 535–540. http://doi.org/10.1007/s11858-009-0214-4

    Google Scholar 

  • Highfield, K., & Goodwin, K. (2013). Apps for mathematics learning: A review of “educational” apps from the iTunes App Store. In V. Steinle, L. Ball, & C. Bardini (Eds.), Mathematics education: Yesterday, today, and tomorrow (pp. 378–385). Melbourne, Australia: MERGA.

    Google Scholar 

  • Highfield, K., & Mulligan, J. (2007). The role of dynamic interactive technological tools in preschoolers’ mathematical patterning. In Watson, J. & Beswick, K. (Eds.), Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia (pp. 372–381). MERGA, Inc.

    Google Scholar 

  • Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495–514. http://doi.org/10.3758/PBR.15.3.495

    Google Scholar 

  • Jacko, J. A. (2012). Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications (3rd ed.). Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Kay, R., & Knaack, L. (2007). Evaluating the use of learning objects for secondary school science. Journal of Computers in Mathematics and Science Teaching, 26(4), 261–289.

    Google Scholar 

  • Ladel, S., & Kortenkamp, U. (2012). Early maths with multi-touch—An activity-theoretic approach. In Proceedings of POEM 2012. Retrieved from http://cermat.org/poem2012/main/proceedings_files/Ladel-Kortenkamp-POEM2012.pdf

  • Ladel, S., & Kortenkamp, U. (2013). An activity-theoretic approach to multi-touch tools in early maths learning. The International Journal for Technology in Mathematics Education, 20(1). Retrieved from http://www.tech.plym.ac.uk/research/mathematics_education/field%20of%20work/ijtme/volume_20/number_one.htmlâ‹•one

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics Into being. New York: Basic Books.

    Google Scholar 

  • Lao, S., Heng, X., Zhang, G., Ling, Y., & Wang, P. (2009). A gestural interaction design model for multi-touch displays. In Proceedings of the 23rd British HCI Group annual conference on people and computers: Celebrating people and technology (pp. 440–446). Swinton, UK: British Computer Society. Retrieved from http://dl.acm.org/citation.cfm?id=1671011.1671068

  • Martin, T., Aghababyan, A., Pfaffman, J., Olsen, J., Baker, S., Janisiewicz, P., et al. (2013). Nanogenetic learning analytics: Illuminating student learning pathways in an online fraction game. In D. Suthers, K. Verbert, E. Duval, & X. Ochoa (Eds.), Proceedings of the third international conference on learning analytics and knowledge (pp. 165–169). New York, NY, USA: ACM. http://doi.org/10.1145/2460296.2460328

  • Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. http://doi.org/10.1111/j.1467-9620.2006.00684.x

    Google Scholar 

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.

    Google Scholar 

  • Moyer-Packenham, P. S., Baker, J., Westenskow, A., Anderson, K. L., Shumway, J. F., & Jordan, K. (2013). A study comparing virtual manipulatives with other instructional treatments in third- and fourth-grade classrooms. Journal of Education, 193(2), 25–40.

    Google Scholar 

  • Moyer-Packenham, P. S., Baker, J., Westenskow, A., Anderson, K. L., Shumway, J. F., & Jordan, K. E. (2014a). Predictors of achievement when virtual manipulatives are used for mathematics instruction. REDIMAT—Journal of Research in Mathematics Education, 3(2), 121–150. http://doi.org/10.4471/redimat

  • Moyer-Packenham, P. S., Bolyard, J. J., & Tucker, S. I. (2014b). Second graders’ mathematical practices for solving fraction tasks. Investigations in Mathematics Learning, 7(1), 54–81.

    Google Scholar 

  • Moyer-Packenham, P. S., Bullock, E. P., Shumway, J. F., Tucker, S. I., Watts, C., Westenskow, A., et al. (2016). The role of affordances in children’s learning performance and efficiency when using virtual manipulatives mathematics touch-screen apps. Mathematics Education Research Journal, 1–27. doi:10.1007/s13394-015-0161-z

    Google Scholar 

  • Moyer-Packenham, P. S., Salkind, G. M., & Bolyard, J. J. (2008). Virtual manipulatives used by K-8 teachers for mathematics instruction: Considering mathematical, cognitive, and pedagogical fidelity. Contemporary Issues in Technology and Teacher Education, 8(3), 202–218.

    Google Scholar 

  • Moyer-Packenham, P. S., Shumway, J. F., Bullock, E., Tucker, S. I., Anderson-Pence, K. L., Westenskow, A., et al. (2015). Young children’s learning performance and efficiency when using virtual manipulative mathematics iPad apps. Journal of Computers in Mathematics and Science Teaching, 34(1), 41–69.

    Google Scholar 

  • Moyer-Packenham, P. S., & Suh, J. M. (2012). Learning mathematics with technology: The influence of virtual manipulatives on different achievement groups. Journal of Computers in Mathematics & Science Teaching, 31(1), 39–59.

    Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35–50.

    Article  Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2016). Revisiting the effects and affordances of virtual manipulatives for mathematics learning. In K. Terry & A. Cheney (Eds.), Utilizing virtual and personal learning environments for optimal learning (pp. 186–215). Hershey, PA: Information Science Reference. Retrieved from doi:10.4018/978-1-4666-8847-6.ch009

  • Murray, T., & Arroyo, I. (2002). Toward measuring and maintaining the Zone of Proximal Development in adaptive instructional systems. In S. A. Cerri, G. Gouardères, & F. Paraguaçu (Eds.), Intelligent tutoring systems (pp. 749–758). Berlin Heidelberg: Springer. Retrieved from http://link.springer.com/chapter/10.1007/3-540-47987-2_75

  • Nathan, M. J., & Kim, S. (2007). Pattern generalization with graphs and words: A cross-sectional and longitudinal analysis of middle school students’ representational fluency. Mathematical Thinking and Learning, 9(3), 193–219. http://doi.org/10.1080/10986060701360886

    Google Scholar 

  • Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 372–415. http://doi.org/10.5951/jresematheduc.44.2.0372

    Google Scholar 

  • Olive, J. (2013). Dynamic and interactive mathematics learning environments: Opportunities and challenges for future research. Mevlana International Journal of Education, 3(3), 8–24. http://dx.doi.org/10.13054/mije.si.2013.02

    Google Scholar 

  • Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21–47. http://doi.org/10.1002/sce.20463

    Google Scholar 

  • Paek, S. (2012). The impact of multimodal virtual manipulatives on young children’s mathematics learning (Doctoral dissertation). Retrieved from ProQuest dissertations & theses full text. (UMI No. 3554708).

    Google Scholar 

  • Paek, S., & Hoffman, D. L. (2014). Challenges of using virtual manipulative software to explore mathematical concepts. In G. Matney & M. Che (Eds.), Proceedings of the 41st Annual Meeting of the Research Council on Mathematics Learning (pp. 169–176), San Antonio, TX.

    Google Scholar 

  • Pelton, T., & Francis Pelton, L. (2011). Design principles for making meaningful mathematics apps. In M. Koehler & P. Mishra (Eds.) Presented at the Society for Information Technology & Teacher Education International Conference (pp. 2199–2204). Chesapeake, VA: AACE. Retrieved from http://www.editlib.org/p/36631/

  • Rick, J. (2012). Proportion: A tablet app for collaborative learning. In Proceedings of the 11th international conference on interaction design and children (pp. 316–319). New York, NY, USA: ACM. http://doi.org/10.1145/2307096.2307155

  • Riconscente, M. M. (2013). Results from a controlled study of the iPad fractions game Motion Math. Games and Culture, 8(4), 186–214. http://doi.org/10.1177/1555412013496894

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.

    Google Scholar 

  • Satsangi, R., & Bouck, E. C. (2014). Using virtual manipulative instruction to teach the concepts of area and perimeter to secondary students with learning disabilities. Learning Disability Quarterly, 1–13. http://doi.org/10.1177/0731948714550101

    Google Scholar 

  • Sedig, K. (2004). Need for a prescriptive taxonomy of interaction for mathematical cognitive tools. In M. Bubak, G. van Albada, P. Sloot, & J. Dongarra (Eds.), Computational Science—ICCS 2004 (Vol. 3038, pp. 1030–1037). Berlin/Heidelberg: Springer. Retrieved from http://www.springerlink.com/content/g76gp8wdt4pu692b/abstract/

  • Sedig, K., Klawe, M., & Westrom, M. (2001). Role of interface manipulation style and scaffolding on cognition and concept learning in learnware. ACM Transactions Computer-Human Interactions, 8(1), 34–59. http://doi.org/10.1145/371127.371159

    Google Scholar 

  • Sedig, K., & Liang, H.-N. (2006). Interactivity of visual mathematical representations: Factors affecting learning and cognitive processes. Journal of Interactive Learning Research, 17(2), 179–212.

    Google Scholar 

  • Sedig, K., & Parsons, P. (2013). Interaction design for complex cognitive activities with visual representations: A pattern-based approach. AIS Transactions on Human-Computer Interaction, 5(2), 84–133.

    Google Scholar 

  • Segal, A. (2011). Do gestural interfaces promote thinking? Embodied interaction: Congruent gestures and direct touch promote performance in math (Doctoral Dissertation). Columbia University. Retrieved from http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED528929

  • Segal, A., Tversky, B., & Black, J. (2014). Conceptually congruent actions can promote thought. Journal of Applied Research in Memory and Cognition, 3(3), 124–130. http://doi.org/10.1016/j.jarmac.2014.06.004

    Google Scholar 

  • Shuler, C. (2009). Pockets of potential: Using mobile technologies to promote children’s learning. New York: The Joan Ganz Cooney Center at Sesame Workshop. Retrieved from http://hal.archives-ouvertes.fr/hal-00696254

  • Tucker, S. I. (2015). An exploratory study of attributes, affordances, abilities, and distance in children’s use of mathematics virtual manipulative iPad apps (Doctoral dissertation, Utah State University).

    Google Scholar 

  • Tucker, S. I., & Moyer-Packenham, P. S. (2014). Virtual manipulatives’ affordances influence student learning. In S. Oesterle, C. Nicol, P. Liljedahl, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 6, p. 251). Vancouver, Canada: PME.

    Google Scholar 

  • Tucker, S. I., Moyer-Packenham, P. S., Boyer-Thurgood, J. M., Anderson, K. L., Shumway, J. F., Westenskow, A., et al. (2014). Literature supporting an investigation of the nexus of mathematics, strategy, and technology in second-graders’ interactions with iPad-based virtual manipulatives. In Proceedings of the 12th annual Hawaii international conference on education (HICE) (pp. 2338–2346), Honolulu, Hawaii. http://doi.org/10.13140/2.1.3392.4169

  • Tucker, S. I., Moyer-Packenham, P. S., Shumway, J. F., & Jordan, K. (2016a). Zooming in on students’ thinking: How a number line app revealed, concealed, and developed students’ number understanding. Australian Primary Mathematics Classroom,21(1), 23–28.

    Google Scholar 

  • Tucker, S. I., Moyer-Packenham, P. S., Westenskow, A., & Jordan, K. E. (2016b). The complexity of the affordance-ability relationship when second-grade children interact with virtual manipulative mathematics apps. Technology, Knowledge and Learning. doi:10.1007/s10758-016-9276-x

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. http://doi.org/10.3758/BF03196322

    Google Scholar 

  • Zacharia, Z. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and Instruction, 32(2), 101–158. http://doi.org/10.1080/07370008.2014.887083

    Google Scholar 

  • Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021–1035. http://doi.org/10.1002/tea.20260

    Google Scholar 

  • Zanchi, C., Presser, A. L., & Vahey, P. (2013). Next generation preschool math demo: Tablet games for preschool classrooms. In Proceedings of the 12th international conference on interaction design and children (pp. 527–530). New York, NY, USA: ACM. http://doi.org/10.1145/2485760.2485857

  • Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 1169–1207). Charlotte, NC: Information Age Publishing Incorporated.

    Google Scholar 

  • Zhang, M., Trussell, R. P., Gallegos, B., & Asam, R. R. (2015). Using math apps for improving student learning: An exploratory study in an inclusive fourth grade classroom. TechTrends, 59(2), 32–39. http://doi.org/10.1007/s11528-015-0837-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen I. Tucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tucker, S.I. (2016). The Modification of Attributes, Affordances, Abilities, and Distance for Learning Framework and Its Applications to Interactions with Mathematics Virtual Manipulatives. In: Moyer-Packenham, P. (eds) International Perspectives on Teaching and Learning Mathematics with Virtual Manipulatives. Mathematics Education in the Digital Era, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-32718-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32718-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32716-7

  • Online ISBN: 978-3-319-32718-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics