Σkynet: A Novel Biologically Inspired Near Extinction Reconstruction Model

  • George I. LambrouEmail author
  • Panagiotis Katrakazas
  • Dimitra Iliopoulou
  • Ioannis Kouris
  • Kostas Giokas
  • Ourania Petropoulou
  • Dimitrios-Dionysios Koutsouris
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 57)


The present work aims to develop a fundamentally novel computational model for reconstructing complex software systems, following some massive internal failure or external infrastructure damage. The present model mimics the biological process of information transmission in terms of transcription and subsequent translation, introducing novel terms such as pre-code and computational RNA.


Complex systems Bio-mimicking Computational DNA Computational RNA Near-extinction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Lemos R, Giese H, Müller H et al., (2013) Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. in Software Engineering for Self-Adaptive Systems II. vol. 7475, de Lemos R, Giese H, Müller H and Shaw M, Eds., ed: Springer Berlin Heidelberg, pp. 1-32.Google Scholar
  2. 2.
    Cheng BC, de Lemos R, Giese H et al., (2009) Software Engineering for Self-Adaptive Systems: A Research Roadmap. in Software Engineering for Self-Adaptive Systems. vol. 5525, Cheng BC, de Lemos R, Giese H, Inverardi P and Magee J, Eds., ed: Springer Berlin Heidelberg, pp. 1-26.Google Scholar
  3. 3.
    Hutchinson NC and Peterson LL (1991) The <e1>x</e1>-Kernel: an architecture for implementing network protocols. Software Engineering, IEEE Transactions on, 17:64-76Google Scholar
  4. 4.
    Bobrow DG, DeMichiel LG, Gabriel RP et al. (1988) Common Lisp Object System specification. SIGPLAN Not., 23:1-142Google Scholar
  5. 5.
    Kiczales G (1996) Aspect-oriented programming. ACM Comput. Surv., 28:154Google Scholar
  6. 6.
    Bibas A, Spanoudakis G, Bellos C et al., “Biologically inspired near extinct system reconstruction,” in Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International Conference on, 2013, pp. 1-6.Google Scholar
  7. 7.
    Goldman N, Bertone P, Chen S et al. (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494:77-80Google Scholar
  8. 8.
    Farooq M and Di Caro G, (2008) Routing Protocols for Next-Generation Networks Inspired by Collective Behaviors of Insect Societies: An Overview. in Swarm Intelligence, Blum C and Merkle D, Eds., ed: Springer Berlin Heidelberg, pp. 101-160.Google Scholar
  9. 9.
    Wedde H, Farooq M and Zhang Y, (2004) BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior. in Ant Colony Optimization and Swarm Intelligence. vol. 3172, Dorigo M, Birattari M, Blum C, Gambardella L, Mondada F and Stützle T, Eds., ed: Springer Berlin Heidelberg, pp. 83-94.Google Scholar
  10. 10.
    Grassé P-P (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie:essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6:41-83Google Scholar
  11. 11.
    Theraulaz G and Bonabeau E (1999) A brief history of stigmergy. Artif Life, 5:97-116Google Scholar
  12. 12.
    Yao-Win H and Scaglione A, “Time synchronization and reach-back communications with pulse-coupled oscillators for UWB wireless ad hoc networks,” in Ultra Wideband Systems and Technologies, 2003 IEEE Conference on, 2003, pp. 190-194.Google Scholar
  13. 13.
    Sarafijanovic S and Le Boudec J-Y, (2008) Artificial Immune System for Collaborative Spam Filtering. in Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). vol. 129, Krasnogor N, Nicosia G, Pavone M and Pelta D, Eds., ed: Springer Berlin Heidelberg, pp. 39-51.Google Scholar
  14. 14.
    Sarafijanović S and Le Boudec J-Y, (2004) An Artificial Immune System for Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal, and Memory Detectors. in Artificial Immune Systems. vol. 3239, Nicosia G, Cutello V, Bentley P and Timmis J, Eds., ed: Springer Berlin Heidelberg, pp. 342-356.Google Scholar
  15. 15.
    Le Boudec J-Y and Sarafijanović S, (2004) An Artificial Immune System Approach to Misbehavior Detection in Mobile Ad Hoc Networks. in Biologically Inspired Approaches to Advanced Information Technology. vol. 3141, Ijspeert A, Murata M and Wakamiya N, Eds., ed: Springer Berlin Heidelberg, pp. 396-411.Google Scholar
  16. 16.
    Mickens JW and Noble BD, “Modeling epidemic spreading in mobile environments,” presented at the Proceedings of the 4th ACM workshop on Wireless security, Cologne, Germany, 2005.Google Scholar
  17. 17.
    Yang W, Chakrabarti D, Chenxi W et al., “Epidemic spreading in real networks: an eigenvalue viewpoint,” in Reliable Distributed Systems, 2003. Proceedings. 22nd International Symposium on, 2003, pp. 25-34.Google Scholar
  18. 18.
    Meisel M, Pappas V and Zhang L (2010) A taxonomy of biologically inspired research in computer networking. Comput. Netw., 54:901-916Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • George I. Lambrou
    • 1
    • 2
    Email author
  • Panagiotis Katrakazas
    • 2
    • 3
  • Dimitra Iliopoulou
    • 2
  • Ioannis Kouris
    • 2
    • 3
  • Kostas Giokas
    • 2
    • 3
  • Ourania Petropoulou
    • 2
  • Dimitrios-Dionysios Koutsouris
    • 2
  1. 1.Choremeio Research Laboratory, First Department of PediatricsNational and Kapodistrian University of AthensGoudi, AthensGreece
  2. 2.School of Electrical and Computer Engineering, Biomedical Engineering LaboratoryNational Technical University of AthensGoudi, AthensGreece
  3. 3.Applied Informatics in mHealth (AiM) Research Team, Biomedical Engineering Laboratory, Institute of Computer SystemsNational Technical University of AthensAthensGreece

Personalised recommendations