Advertisement

An Automated Function for Identifying EEG Independent Components Representing Bilateral Source Activity

  • Caterina PiazzaEmail author
  • Makoto Miyakoshi
  • Zeynep Akalin-Acar
  • Chiara Cantiani
  • Gianluigi Reni
  • Anna Maria Bianchi
  • Scott Makeig
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 57)

Abstract

Independent component analysis (ICA) decomposition can be used for the identification and localization of brain generators. ICA separates EEG data into a sum of maximally distinct signals (independent components, ICs). Source localization algorithms can be directly applied to the component projections (scalp maps). Usually, brain-generated ICs are well modeled using one equivalent dipole or, in the case of IC scalp maps that appear bilaterally symmetric, with two position-symmetric dipoles. Selection of ICs for bilateral dipole fitting is typically performed by visual inspection, a time-consuming and subjective step. We have developed and tested a routine for automated recommendation of ICs that may be best fit with a position-symmetric dual-dipole model. The algorithm is based on near bilateral symmetry of IC scalp map maxima and minima. Results showed good classification accuracy and specificity. Sensitivity can be optimized by adjusting free parameters as suggested.

Keywords

Independent Component Analysis (ICA) Source localization Automatic classification Bilateral activity Equivalent dipole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Makeig S, Bell AJ, Jung T, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems 145-51.Google Scholar
  2. 2.
    Onton J, Makeig S (2006) Information-based modeling of event-related brain dynamics. Prog Brain Res 159:99-120.Google Scholar
  3. 3.
    Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S (2012) Independent EEG sources are dipolar. PLoS One 7(2):e30135.Google Scholar
  4. 4.
    Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9-21.Google Scholar
  5. 5.
    Palmer JA, Kreutz-Delgado K, Makeig S (2006) Super-gaussian mixture source model for ICA. In: Independent component analysis and blind signal separation. Springer.Google Scholar
  6. 6.
    Acar ZA, Makeig S (2010) Neuroelectromagnetic forward head modeling toolbox. J Neurosci Methods 190(2):258-70.Google Scholar
  7. 7.
    Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Caterina Piazza
    • 1
    • 2
    Email author
  • Makoto Miyakoshi
    • 3
  • Zeynep Akalin-Acar
    • 3
  • Chiara Cantiani
    • 4
  • Gianluigi Reni
    • 2
  • Anna Maria Bianchi
    • 1
  • Scott Makeig
    • 3
  1. 1.Department of Electronics Information and BioengineeringPolitecnico di MilanoMilanItaly
  2. 2.Bioengineering LabScientific Institute IRCCS Eugenio MedeaLeccoItaly
  3. 3.Swartz Center for Computational Neuroscience, Institute for Neural ComputationUniversity of California San DiegoLa JollaUSA
  4. 4.Department of Developmental NeuropsychologyScientific Institute IRCCS Eugenio MedeaLeccoItaly

Personalised recommendations