Advertisement

Applying Hilbert Transform to Monitor Cerebral Function of Patients Diagnosed with Mesial Temporal Lobe Epilepsy: Comparison Between aEEG and HaEEG

  • Talita E. B. Santos
  • Thiago M. de Melo
  • Mauricio Cagy
  • Antonio Fernando Casttelli InfantosiEmail author
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 57)

Abstract

Electroencephalography (EEG) is one of the first choices for diagnosis of epilepsy, and in some cases this exam should be performed over long periods of time. A cerebral function monitor device aids this long term monitoring and consequently the diagnosis of epilepsy. However, EEG generates a large amount of data to be analyzed, which complicates and slows the diagnostic process. In order to speed up and facilitate this process, a method of data reduction known as amplitude-integrated EEG (aEEG) is currently used, which shows EEG trends over long periods of time. Hilbert aEEG (HaEEG) is another method of EEG reduction, which uses Hilbert transform for envelope acquisition during the reduction process. This work aims to compare aEEG and HaEEG. This comparison was performed using central (C3, C4), parietal (P3, P4) and temporal (T1, T2, T3, T4, T5, T6) derivations from seizure-containing records, a comparison was made between aEEG and HaEEG. Both methods highlighted seizures in relation to background activity, indicating that both can be used in EEG reduction from patients with mesial temporal lobe epilepsy.

Keywords

Continuous monitoring Hilbert transform Data reduction aEEG HaEEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argoud FIM (2001) Contribuição à automatização da detecção e análise de eventos epileptiformes em eletroencefalograma. Tese de Doutorado em Engenharia Elétrica, Instituto de Engenharia Biomédica., Universidade Federal de Santa CatarinaGoogle Scholar
  2. 2.
    Maynard DE, Prior PF, Scott DF (1969) Device for continuous monitoring of cerebral activity in resuscitated patients. British medical journal 4:545–546.Google Scholar
  3. 3.
    Agarwal R, Gotman J, Flanagan D, Rosenblatt B (1998) Automatic EEG analysis during long-term monitoring in the ICU. Electroencephalography and clinical Neurophysiology 107:44–58.Google Scholar
  4. 4.
    Zhang D, Ding H (2013) Calculation of compact amplitude-integrated EEG tracing and upper and lower margins using raw EEG data. Health 05:885–891. doi: 10.4236/health.2013.55116Google Scholar
  5. 5.
    de Melo TM, Cagy M, Infantosi AFC (2014) Aplicação da transformada de Hilbert para redução do eletroencefalograma multicanal de longa duração. Anais do XXIV Congresso Brasileiro em Engenharia Biomédica 1824–1827.Google Scholar
  6. 6.
    Shellhaas RA, Tsuchida TN, Chang T, et al. (2012) The American Clinical Neurophysiology Society’s Guideline on Continuous EEG Monitoring in Neonates.Google Scholar
  7. 7.
    Daube JR, Rubin DI (2009) Clinical neurophysiology, 3rd ed. Oxford University Press, Oxford; New YorkGoogle Scholar
  8. 8.
    Wikström S (2011) Background aEEG/EEG measures in very preterm infants : Relation to physiology and outcome. Acta Universitatis Upsaliensis, UppsalaGoogle Scholar
  9. 9.
    Hoffmann K, Freucht M, Witte H, et al. (1996) Analysis and classification of interictal spike discharges in benign partial epilepsy of chidhood on the basis of the Hilbert transformation. Neuroscience Letters 211:195–198. doi: 10.1016/0304-3940(96)12754-3Google Scholar
  10. 10.
    Marple Jr SL (1999) Computing the discrete-time “analytic” signal via FFT. Signal Processing, IEEE Transactions on 47:2600–2603.Google Scholar
  11. 11.
    Transforms Methods for Electroencephalography (EEG) - Databases [Internet]. [cited 2015 Sept. 20]. Available from: http://web.archive.org/web/20100612092409/ http://www.cs.tut.fi/~gomezher/projects/eeg/databases.htm
  12. 12.
    Vergult A, De Clercq W, Palmini A, et al. (2007) Improving the interpretation of ictal scalp EEG: BSS–CCA algorithm for muscle artifact removal. Epilepsia 48:950–958.Google Scholar
  13. 13.
    Thede LD (2005) Practical analog and digital filter design. Artech House New JerseyGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Talita E. B. Santos
    • 1
  • Thiago M. de Melo
    • 1
  • Mauricio Cagy
    • 1
  • Antonio Fernando Casttelli Infantosi
    • 2
    Email author
  1. 1.Biomedical Engineering Program/CoppeFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (Coppe), Programa de Engenharia BiomédicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations