Analysis of Foetal Heart Rate Variability Components by Means of Empirical Mode Decomposition

  • Maria Romano
  • Giuliana Faiella
  • Fabrizio Clemente
  • Luigi Iuppariello
  • Paolo Bifulco
  • Mario CesarelliEmail author
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 57)


Foetal heart rate variability (FHRV) is important in foetal wellbeing assessment. However, a gold standard for its evaluation is not yet available. Here, a rather new methodology, the empirical mode decomposition (EMD), is proposed to decompose FHR signal in its components. To test the reliability of this methodology, we employed simulated FHR signals, “clean” and noisy, with characteristics defined a priori and computed two indices of foetal health, the sympatho-vagal balance (SVB) and the standard deviation of FHR signal (ASD). Results obtained in comparison between values set for the simulation and those estimated after EMD demonstrated that EMD could be useful for evaluation of FHRV components directly in time domain. The error in the indices estimation was on average just over 1% for SVB and zero for ASD. In presence of noise, the error in ASD estimation was below 8% whereas that in SVB evaluation increases becoming almost 30%.


Foetal Heart Rate Variability Empirical Mode Decomposition Sympatho-Vagal Balance FHR simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Romano M, Bifulco P, Cesarelli M, Sansone M, Bracale M (2006) Fetal heart rate power spectrum response to uterine contraction. Medical & Biological Engineerin & Computing 44(3):188-201Google Scholar
  2. 2.
    Royal College Of Obstetricians And Gynaecologists (2001) The use of electronic fetal monitoring. The use and interpretation of cardiotocography in intrapartum fetal surveillance. RCOG. Evidence-based Clinical Guideline 8Google Scholar
  3. 3.
    Sibony O, Fouillot JP, Benaoudia M, Benhalla A, Oury JF, Sureau C, Blot P (1994) Quantification of the heart rate variability by spectral analysis of fetal well-being and fetal distress. Europ. Journal of Obstetrics & Gynecology and Reproductive Biology 54:103-108Google Scholar
  4. 4.
    Billman GE (2011) Heart rate variability – a historical perspective. Frontiers in physiology 2 Article86Google Scholar
  5. 5.
    Romano M, Cesarelli M, Bifulco P, Sansone M, Bracale M (2002) Development of an algorithm for homogeneous FHR signals identification. Embec’02 Proc. II:1542Google Scholar
  6. 6.
    Romano M, Bracale M, Cesarelli M, Campanile M, Bifulco P et al. (2006) Antepartum cardiotocography: a study of fetal reactivity in frequency domain. Comput Biol Med JGoogle Scholar
  7. 7.
    Dawes GS, Moulden M, Redman CWG (1991) System 8000: computerized antenatal fetal heart rate analysis. J Perinat Med 19:47-51Google Scholar
  8. 8.
    Members of Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Guidelines. Heart Rate Variability - Standards of measurement, physiological interpretation, and clinical use. European Heart Journal 17:354-381Google Scholar
  9. 9.
    Romano M, Cesarelli M, Bifulco P, Ruffo M, Fratini A, Pasquariello G (2009) Time-frequency analysis of CTG signals. Current Develop. in Theory and Applications of Wavelets 3(2):169-192Google Scholar
  10. 10.
    Cesarelli M, Romano M, Ruffo M, Bifulco P, Pasquariello G, Fratini A (2011) PSD modifications of FHRV due to interpolation and CTG storage rate. Biomedical Signal Processing and Control 6(3):225-230Google Scholar
  11. 11.
    Spyridou KK, Hadjileontiadis LJ (2007) Analysis of Fetal Heart Rate in Healthy and Pathological Pregnancies Using Wavelet-based Features. Proc. of 29th Annual Internat. Conference IEEE EMBS, Cité Internationale, Lyon, France, August 23-26, 2007.Google Scholar
  12. 12.
    Chris P et al (2008) The effect of artifact correction on spectral estimates of heart rate variability. Engineering in Medicine and Biology Society. EMBS 2008, 30th Annual Int. Conf. IEEEGoogle Scholar
  13. 13.
    Huikuri HV, Makikallio TH, Perkiomaki J (2003) Measurement of Heart Rate Variability by Methods Based on Nonlinear Dynamics. Journal of Electrocardiology 36:95-99Google Scholar
  14. 14.
    Cesarelli M, Romano M, Bifulco P, Improta G, D’Addio G (2012) An Application of Symbolic Dynamics for FHRV assessment. Stud Health Technol Inform., 180:123-127Google Scholar
  15. 15.
    Romano M, Bifulco P, Iuppariello L, Clemente F, D’addio G, Cesarelli M (2015) A new tool for foetal phonocardiography simulation. MIE 2015, Madrid 27th-29th May, Digital Healthcare Empowering Europeans, R. Cornet et al. (Eds.), European Federation for Medical Informatics (EFMI), Vol. 210:743-747Google Scholar
  16. 16.
    Improta G, Romano M, Ponsiglione AM, Bifulco P, Faiella G, Cesarelli M (2014) Computerized cardiotocography: a software to generate synthetic signals. J Health Med Informat 5(4)Google Scholar
  17. 17.
    Cesarelli M, Romano M, D’Addio G, Ruffo M, Bifulco P, Pasquariello G, Fratini A (2011) Floatingline estimation in FHR signal analysis. 5th European IFMBE Conf., 14-18 September 2011, Budapest, Hungary, IFMBE Proc. 37:179–182Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Romano
    • 1
  • Giuliana Faiella
    • 2
  • Fabrizio Clemente
    • 3
  • Luigi Iuppariello
    • 2
  • Paolo Bifulco
    • 2
  • Mario Cesarelli
    • 2
    Email author
  1. 1.DMSCUniversity “Magna Graecia”CatanzaroItaly
  2. 2.DIETIUniversity “Federico II”NaplesItaly
  3. 3.IBBItalian National Research CouncilRomeItaly

Personalised recommendations