The Influence of Airway Resistance in the Dynamic Elastance Model

  • Bernhard LauferEmail author
  • Jörn Kretschmer
  • Paul D. Docherty
  • Yeong Shiong Chiew
  • Knut Möller
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 57)


The selection of optimal positive end-expiratory pressure (PEEP) levels during ventilation therapy of patients with ARDS (acute respiratory distress syndrome) remains a problem for clinicians. A particular mooted strategy states that minimizing the energy transferred to the lung during mechanical ventilation could potentially be used to determine the optimal, patient-specific PEEP levels. The dynamic elastance model of pulmonary mechanics could potentially be used to minimize the energy by localization of the patients’ minimum dynamic elastance range.

The sensitivity of the dynamic elastance model to variance in the airway resistance was analyzed. Subsequently, the airway resistance was determined using two alternate identification methods and was compared to the constant resistance obtained using the dynamic elastance model.

Both identification methods showed similar decreasing trends of the resistance during inspiration. This declining trend is an apparent exponential decrease. Results showed that the constant airway resistance, presumed by the dynamic elastance model, has to be rechecked and investigated.


Lung mechanics Physiological modelling First Order Model Mechanical ventilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. P. Amato, C. S. V. Barbas, D. M. Medeiros et al. (1998) Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 338:347-54Google Scholar
  2. 2.
    J. Silversides and N. Ferguson (2013) Clinical review: Acute respiratory distress syndrome - clinical ventilator management and adjunct therapy. Critical Care 17:225Google Scholar
  3. 3.
    M. Donahoe (2011) Acute respiratory distress syndrome: A clinical review. Pulmonary Circulation 1:192-211Google Scholar
  4. 4.
    J. M. Halter, J. M. Steinberg, H. J. Schiller et al. (2003) Positive End-Expiratory Pressure after a Recruitment Maneuver Prevents Both Alveolar Collapse and Recruitment/Derecruitment. Am J Respir Crit Care Med 167:1620-6Google Scholar
  5. 5.
    Acute-Respiratory-Distress-Syndrome-Network (2000) Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine 342:1301-8Google Scholar
  6. 6.
    C. Cobelli (2008) Introduction to modeling in physiology and medicine. Academic Press, Amsterdam; BostonGoogle Scholar
  7. 7.
    J. H. T. Bates (2009) Lung Mechanics: An Inverse Modeling Approach. Cambridge University Press, United States of America, New YorkGoogle Scholar
  8. 8.
    Y. S. Chiew, J. G. Chase, G. Shaw et al. (2011) Model-based PEEP Optimisation in Mechanical Ventilation. BioMedical Engineering OnLine 10:111Google Scholar
  9. 9.
    E. van Drunen, Y. S. Chiew, C. Pretty et al. (2014) Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulmonary Medicine 14:33Google Scholar
  10. 10.
    P. Suter, B. Fairley, and M. Isenberg (1975) Optimum End-Expiratory Airway Pressure in Patients with Acute Pulmonary Failure. N Engl J Med 292:284-9Google Scholar
  11. 11.
    Y. Chiew, C. Pretty, G. Shaw et al. (2015) Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot and Feasibility Studies 1:1-10Google Scholar
  12. 12.
    B. Laufer, P. D. Docherty, Y. S. Chiew et al. (2015) Identifying pressure dependent elastance in lung mechanics with reduced influence of unmodelled effects, BMS 2015, Berlin, Germany, 2015Google Scholar
  13. 13.
    A. Knörzer, P. D. Docherty, Y. S. Chiew et al. (2014) Adjustments to the first order model of pulmonary mechanics to capture equivalent elastance at different pressure and PEEP levels, The 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, 2014Google Scholar
  14. 14.
    K. Zilles and B. Tillmann (2010) Anatomie. Springer,Google Scholar
  15. 15.
    M. L. Mogensen, K. S. Steimle, D. S. Karbing et al. (2011) A model of perfusion of the healthy human lung. Computer Methods and Programs in Biomedicine 101:156-65Google Scholar
  16. 16.
    D. A. Kaminsky (2012) What Does Airway Resistance Tell Us About Lung Function? Respiratory Care 57:85-99Google Scholar
  17. 17.
    R. Kramme. (2011). Medizintechnik: Verfahren – Systeme – Informationsverarbeitung (4., vollständig überarbeitete und erweiterte Auflage ed.).Google Scholar
  18. 18.
    A. B. DuBois, S. Y. Botelho, and J. H. Comroe (1956) A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and patients with respiratory disease. The Journal of Clinical Investigation 35:327-35Google Scholar
  19. 19.
    S. Blonshine and M. D. Goldman (2008) OPtimizing performance of respiratory airflow resistance measurements. Chest 134:1304-9Google Scholar
  20. 20.
    C. A. Stahl, K. Moller, S. Schumann et al. (2006) Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med 34:2090 - 8Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bernhard Laufer
    • 1
    Email author
  • Jörn Kretschmer
    • 1
  • Paul D. Docherty
    • 2
  • Yeong Shiong Chiew
    • 3
  • Knut Möller
    • 1
  1. 1.Institute of Technical MedicineFurtwangen UniversityVillingen-SchwenningenGermany
  2. 2.Department of Mechanical EngineeringUniversity of CanterburyChristchurchNew Zealand
  3. 3.School of EngineeringMonash University MalaysiaBandar SunwayMalaysia

Personalised recommendations