Advertisement

Effects of Different Models and Different Respiratory Manoeuvres in Respiratory Mechanics Estimation

  • César BibianoEmail author
  • Yeong Shiong Chiew
  • Daniel Redmond
  • Jörn Kretschmer
  • Paul D. Docherty
  • J. Geoff Chase
  • Knut Möller
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 57)

Abstract

The aim of mechanical ventilation (MV) is to provide sufficient breathing support for patients with respiratory failure in the intensive care unit (ICU). However, applying inappropriate ventilation parameters can result in ventilator induced lung injury. To prevent this, respiratory mechanics such as elastance and resistance can be estimated at the bedside to help guide MV parameters using respiratory mechanics models. Different models or methods provide different information and each have their own advantages and disadvantages. In this study, respiratory mechanics of 9 respiratory failure patients were estimated using the simple first order model (FOM) and viscoelastic model (VEM). These patients undergo different respiratory manoeuvres and their estimated respiratory mechanics using these models are studied and compared with a standard clinical method in estimating respiratory mechanics. The results showed that both models were able to capture patient-specific mechanics and responses. The VEM was able to provide higher correlation to the standard clinical method compared to FOM.

Keywords

Respiratory mechanics Parameter identification Elastance First Order Model Viscoelastic Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ganzert S, Möller K, Steinmann D, Schumann S, Guttmann J: Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model. Crit Care 2009, 13(6):1-10.Google Scholar
  2. 2.
    Rees SE, Allerød C, Murley D, Zhao Y, Smith BW, Kjærgaard S, Thorgaard P, Andreassen S: Using physiological models and decision theory for selecting appropriate ventilator settings. J Clin Monit Comput 2006, 20(6):421-429.Google Scholar
  3. 3.
    Stahl CA, Möller K, Schumann S, Kuhlen R, Sydow M, Putensen C, Guttmann J: Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Critical Care Medicine 2006, 34(8):2090-2098.Google Scholar
  4. 4.
    Dräger Medical AG & Co: Evita 4 Lab, PC - Fernsteuerung für Messmanöver und spezielle Beatmungsmuster in Evita 4, Gebrauchsanweisung. 2001.Google Scholar
  5. 5.
    Bates JH: Lung Mechanics: An Inverse Modeling Approach. 1st edition. New York, USA: Cambridge University Press; 2009.Google Scholar
  6. 6.
    van Drunen E, Chiew YS, Chase J, Shaw G, Lambermont B, Janssen N, Damanhuri N, Desaive T: Expiratory model-based method to monitor ARDS disease state. BioMed Eng OnLine 2013, 12(1):1-15.Google Scholar
  7. 7.
    Schranz C, Docherty P, Chiew Y, Möller K, Chase J: Iterative integral parameter identification of a respiratory mechanics model. BioMed Eng OnLine 2012, 11(1):1-14.Google Scholar
  8. 8.
    Chiew YS, Pretty C, Shaw G, Chiew YW, Lambermont B, Desaive T, Chase J: Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot and Feasibility Studies 2015, 1:9.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • César Bibiano
    • 1
    Email author
  • Yeong Shiong Chiew
    • 2
  • Daniel Redmond
    • 3
  • Jörn Kretschmer
    • 1
  • Paul D. Docherty
    • 3
  • J. Geoff Chase
    • 3
  • Knut Möller
    • 1
  1. 1.Institute of Technical MedicineFurtwangen UniversityVS-SchwenningenGermany
  2. 2.School of EngineeringMonash University MalaysiaBandar SunwayMalaysia
  3. 3.Department of Mechanical EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations