Skip to main content

Engineering Enzyme-Driven Dynamic Behaviour in Lipid Vesicles

  • Conference paper
  • First Online:
Advances in Artificial Life, Evolutionary Computation and Systems Chemistry (WIVACE 2015)

Abstract

The urea–urease system is a pH dependent enzymatic reaction that was proposed as a convenient model to study pH oscillations in vitro; here, in order to determine the best conditions for oscillations, a two-variable model is used in which acid and substrate, urea, are supplied at rates \(k_h\) and \(k_s\) from an external medium to an enzyme-containing compartment. Oscillations were observed between pH 4 and 8. Thus the reaction appears a good candidate for the observation of oscillations in experiments, providing the necessary condition that \(k_h > k_s\) is met. In order to match these conditions, we devised an experimental system where we can ensure the fast transport of acid to the encapsulated urease, compared to that of urea. In particular, by means of the droplet transfer method, we encapsulate the enzyme, together with a suitable pH indicator, in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid membrane, where differential diffusion of H\(^+\) and urea is ensured by the different permeability (\(P_m\)) of membranes to the two species. Here we present preliminary tests for the stability of the enzymatic reaction in the presence of lipids and also the successful encapsulation of the enzyme into lipid vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. Mech. 27(4), 247–325 (2002)

    Article  Google Scholar 

  2. Orbán, M., Kurin-Csörgei, K., Epstein, I.R.: pH-regulated chemical oscillators. Acc. Chem. Res. 48(3), 593–601 (2015)

    Article  Google Scholar 

  3. Vanag, V.K., Miguez, D.G., Epstein, I.R.: Designing an enzymatic oscillator: bistability and feedback controlled oscillations with glucose oxidase in a continuous flow stirred tank reactor. J. Chem. Phys. 125, 194515 (2006)

    Article  Google Scholar 

  4. Hu, G., Pojman, J.A., Scott, S.K., Wrobel, M.M., Taylor, A.F.: Base-catalyzed feedback in the urea-urease reaction. J. Phys. Chem. B 114(44), 14059–14063 (2010)

    Article  Google Scholar 

  5. Wrobel, M.M., Bánsági, T. Jr., Scott, S.K., Taylor, A.F., Bounds, C.O., Carranza, A., Pojman, J.A.: pH wave-front propagation in the urea-urease reaction. Biophys. J. 103(3), 610–615 (2012)

    Article  Google Scholar 

  6. Stingl, K., Altendorf, K., Bakker, E.P.: Acid survival of Helicobacter pylori: how does urease activity trigger cytoplasmic pH homeostasis? Trends Microbiol. 10(2), 70–74 (2002)

    Article  Google Scholar 

  7. Caplan, S.R., Naparstek, A., Zabusky, N.J.: Chemical oscillations in a membrane. Nature 245(5425), 364–366 (1973)

    Article  Google Scholar 

  8. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)

    Article  Google Scholar 

  9. Walde, P., Umakoshi, H., Stano, P., Mavelli, F.: Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem. Commun. 50(71), 10177–10197 (2014)

    Article  Google Scholar 

  10. Tomasi, R., Noel, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)

    Article  Google Scholar 

  11. Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconv. Comput. 11(1), 23–36 (2015)

    Google Scholar 

  12. Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)

    Article  Google Scholar 

  13. Stockmann, T.J., Nol, J.M., Ristori, S., Combellas, C., Abou-Hassan, A., Rossi, F., Kanoufi, F.: Scanning electrochemical microscopy of Belousov-Zhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species. Anal. Chem. 87(19), 9621–9630 (2015)

    Article  Google Scholar 

  14. Vanag, V.K., Epstein, I.R.: Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87(22), 228301–228304 (2001)

    Article  Google Scholar 

  15. Toiya, M., Vanag, V.K., Epstein, I.R.: Diffusively coupled chemical oscillators in a microfluidic assembly. Angew. Chem. Int. Ed. 47(40), 7753–7755 (2008)

    Article  Google Scholar 

  16. Rossi, F., Vanag, V.K., Epstein, I.R.: Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction. Chem. Eur. J. 17(7), 2138–2145 (2011)

    Article  Google Scholar 

  17. Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout, G.B., Epstein, I.R., Fraden, S.: Testing turings theory of morphogenesis in chemical cells. Proc. Nat. Acad. Sci. 111(12), 4397–4402 (2014)

    Article  Google Scholar 

  18. Paul, A.: Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction. J. Phys. Chem. B 109(19), 9639–9644 (2005)

    Article  Google Scholar 

  19. Rossi, F., Varsalona, R., Liveri, M.L.T.: New features in the dynamics of a ferroin-catalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem. Phys. Lett. 463(4–6), 378–382 (2008)

    Article  Google Scholar 

  20. Jahan, R.A., Suzuki, K., Mahara, H., Nishimura, S., Iwatsubo, T., Kaminaga, A., Yamamoto, Y., Yamaguchi, T.: Perturbation mechanism and phase transition of AOT aggregates in the Fe(II)[batho(SO3)2]3 - catalyzed aqueous Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 485(4–6), 304–308 (2010)

    Article  Google Scholar 

  21. Rossi, F., Liveri, M.L.T.: Chemical self-organization in self-assembling biomimetic systems. Ecol. Modell. 220(16), 1857–1864 (2009)

    Article  Google Scholar 

  22. Sciascia, L., Rossi, F., Sbriziolo, C., Liveri, M.L.T., Varsalona, R.: Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration. Phys. Chem. Chem. Phys. 12(37), 11674–11682 (2010)

    Article  Google Scholar 

  23. Rossi, F., Varsalona, R., Marchettini, N., Turco Liveri, M.L.: Control of spontaneous spiral formation in a zwitterionic micellar medium. Soft Matter 7, 9498 (2011)

    Article  Google Scholar 

  24. Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037109-1–037109-11 (2012)

    Article  MathSciNet  Google Scholar 

  25. Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)

    Article  Google Scholar 

  26. Taylor, A.F., Tinsley, M.R., Wang, F., Huang, Z., Showalter, K.: Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323(5914), 614–617 (2009)

    Article  Google Scholar 

  27. Rossi, F., Ristori, S., Marchettini, N., Pantani, O.L.: Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118(42), 24389–24396 (2014)

    Article  Google Scholar 

  28. Bánsági, T. Jr., Taylor, A.F.: The role of differential transport in an oscillatory enzyme reaction. J. Phys. Chem. B 118(23), 6092–6097 (2014)

    Article  Google Scholar 

  29. Muzika, F., Bansagi, T., Schreiber, I., Schreiberovi, L., Taylor, A.F.: A bistable switch in pH in urease-loaded alginate beads. Chem. Commun. (Camb.) 50(76), 11107–11109 (2014)

    Article  Google Scholar 

  30. Lasic, D.D., Barenholz, Y.: Handbook of Nonmedical Applications of Liposomes: Theory and Basic Sciences, vol. 1. CRC Press, Boca Raton (1996)

    Google Scholar 

  31. Paula, S., Volkov, A., Van Hoek, A., Haines, T., Deamer, D.W.: Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 70(1), 339 (1996)

    Article  Google Scholar 

  32. Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19(7), 2870–2879 (2003)

    Article  Google Scholar 

  33. Carrara, P., Stano, P., Luisi, P.L.: Giant vesicles colonies: a model for primitive cell communities. ChemBioChem 13(10), 1497–1502 (2012)

    Article  Google Scholar 

  34. Stano, P., Souza, T.P.D., Carrara, P., Altamura, E., DAguanno, E., Caputo, M., Luisi, P.L., Mavelli, F.: Recent biophysical issues about the preparation of solute-filled lipid vesicles. Mech. Adv. Mater. Struct. 22(9), 748–759 (2015)

    Article  Google Scholar 

  35. Stano, P., Wodlei, F., Carrara, P., Ristori, S., Marchettini, N., Rossi, F.: Approaches to molecular communication between synthetic compartments based on encapsulated chemical oscillators. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 58–74. Springer, Heidelberg (2014)

    Google Scholar 

  36. Grotzky, A., Altamura, E., Adamcik, J., Carrara, P., Stano, P., Mavelli, F., Nauser, T., Mezzenga, R., Schlter, A.D., Walde, P.: Structure and enzymatic properties of molecular dendronized polymer-enzyme conjugates and their entrapment inside giant vesicles. Langmuir 29(34), 10831–10840 (2013)

    Article  Google Scholar 

  37. Clement, N.R., Gould, J.M.: Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry 20(6), 1534–1538 (1981)

    Article  Google Scholar 

  38. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, vol. 14. Siam, Philadelphia (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

F.R. was supported by the grants ORSA133584 and ORSA149477 funded by the University of Salerno (FARB ex 60 %). The authors acknowledge the support through the COST Action CM1304 (Emergence and Evolution of Complex Chemical Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rossi .

Editor information

Editors and Affiliations

Appendix

Appendix

Introducing \(\mathrm {s}=\mathrm {[S]}/\mathrm {K_m}\), \(\mathrm {h}=\mathrm {[H^+]}/\mathrm {K_{ES1}}\), \(\tau =t\mathrm {k_{E}}\mathrm {[E]}/\mathrm {K_m}\), \(\kappa =\mathrm {K_m}/\mathrm {K_{ES1}}\), \(\kappa _{\mathrm {es}}=\mathrm {K_{ES2}}/\mathrm {K_{ES1}}\), \(\kappa _{\mathrm {w}}=\mathrm {K_{w}}/\mathrm {K_{ES1}^2}\), \(\kappa _{\mathrm {s}}=\mathrm {k_{S}}\mathrm {K_m}/(\mathrm {k_{E}}\mathrm {[E]})\) and \(\kappa _{\mathrm {h}}=\mathrm {k_{H}}\mathrm {K_m}/(\mathrm {k_{E}}\mathrm {[E]})\) Eq. (2) become

$$\begin{aligned} \begin{aligned} \frac{\partial \mathrm {s}}{\partial \tau }&=\kappa _{\mathrm {s}}(\mathrm {s}_0-\mathrm {s})-\mathrm {r}\\ \frac{\partial \mathrm {h}}{\partial \tau }&=\left( \kappa _{\mathrm {h}}\left( \mathrm {h}_0-\dfrac{\kappa _{\mathrm {w}}}{\mathrm {h}_0}-\mathrm {h}+\dfrac{\kappa _{\mathrm {w}}}{\mathrm {h}}\right) -2\kappa \mathrm {r}\right) \left( 1+\dfrac{\kappa _{\mathrm {w}}}{\mathrm {h}^2}\right) ^{-1} \end{aligned} \end{aligned}$$
(A.1)

where

$$ \mathrm {r}=\dfrac{\mathrm {s}}{(1+\mathrm {s})\left( 1+\kappa _{\mathrm {es}}/\mathrm {h}+\mathrm {h}\right) }. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Miele, Y., Bánsági, T., Taylor, A.F., Stano, P., Rossi, F. (2016). Engineering Enzyme-Driven Dynamic Behaviour in Lipid Vesicles. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds) Advances in Artificial Life, Evolutionary Computation and Systems Chemistry. WIVACE 2015. Communications in Computer and Information Science, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-32695-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32695-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32694-8

  • Online ISBN: 978-3-319-32695-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics