Skip to main content

The CTOA as a Parameter of Resistance to Crack Extension in Pipes Under Internal Pressure

  • Conference paper
  • First Online:
Fracture at all Scales

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Different methods of CTOA measurements are described: Optical microscopy coupled with digital image correlation, analytical analysis of experimental load-displacement curves or simulation by Finite Element method. Using a Modified Compact Tension (MCT) specimen at room temperature, tests are performed to measure the value of the CTOA of API 5L X65 pipe steel. The influence of thickness on CTOA has been studied and explained through a “triaxial stress constraint”. Crack extension is modelled by the finite element method using the CTOA criterion coupled with the node release technique. Crack velocity, arrest pressure and crack extension at arrest have been determined. Values of the CTOA are not intrinsic to materials. Like other measures of fracture toughness, it is sensitive to geometry and loading mode. This sensitivity can be described by a constraint parameter. For the thickness effect, the constraint parameter Tz is very appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaro RL, Sowards JW, Drexler ES, McColskey JD, MacCowan C (2013) CTOA testing of pipe line steels using MDCB specimens. J Pipe Eng 3:199–216

    Google Scholar 

  2. Andersson H (1973) A finite element representation of stable crack growth. J Mech Phys Solids 21:337–356

    Article  Google Scholar 

  3. ASTM E2472-06e1 (2002) Standard test method for determination of resistance to stable crack extension under low-constraint conditions

    Google Scholar 

  4. Ben Amara M, Capelle J, Azari Z, Pluvinage G (2015) Prediction of arrest pressure in pipe based on CTOA. J Pipe Eng 14

    Google Scholar 

  5. Brocks W, Yuan H (1991) Numerical studies on stable crack growth. In: Defect assessment in components fundamentals and applications, vol 9. ESIS Publication, Oxford, UK, pp 19–33

    Google Scholar 

  6. Capelle J, Ben Amara M, Pluvinage G, Azari Z (2014) Role of constraint on the shift of ductile–brittle transition temperature of subsize Charpy specimens. Fatigue Fract Eng Mater Struct 37:1291–1385

    Article  Google Scholar 

  7. Civallero M, Mirabile M, Sih GC (1981) Fracture mechanics in pipeline technology. In: Sih GC, Mirabile M (eds) Analytical and experimental fracture mechanics. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 157–174

    Google Scholar 

  8. Cotterell B (1980) Slightly curved or kinked cracks. Int J Fract 16(2):155–169

    Article  Google Scholar 

  9. Cen C (2013) Characterization and calculation of fracture toughness for high grade pipes. PhD thesis, University of Alberta

    Google Scholar 

  10. Darcis PhP, McCowan CN, Windhoff H, McColskey JD, Siewert TA (2008) Crack tip opening angle optical measurement methods in five pipeline steels. Eng Fract Mech 75:2453–2468

    Article  Google Scholar 

  11. Dawicke D, Sutton M (1994) CTOA and crack-tunneling measurements in thin sheet 2024-T3 aluminum alloy. Exp Mech 34(4):357–368

    Article  Google Scholar 

  12. Demofonti G, Buzzichelli G, Venzi S, Kanninen M (1995) Step by step procedure for the two specimen CTOA test. In: Denys R (ed) Pipeline technology, vol II. Elsevier, Amsterdam

    Google Scholar 

  13. Demofonti G, Mannucci G, Hillenbrand HG, Harris D (2004) Evaluation of X100 steel pipes for high pressure gas transportation pipelines by full scale tests. In: International pipeline conference, Calgary, Canada

    Google Scholar 

  14. Erdogan F, Sih GC (1963) On the crack extension in plates under loading and transverse shear. Trans ASMEJ Basic Eng 85:519–527

    Article  Google Scholar 

  15. Eiber R, Bubenik T, Maxey W (1993) GASDECOM, computer code for the calculation of gas decompression speed that is included in fracture control technology for natural gas pipelines. NG-18 Report 208, American Gas Association Catalog

    Google Scholar 

  16. Jakobsen E (2013) Deformation of pressurized pipelines. Master thesis, Norwegian University of Science and Technology

    Google Scholar 

  17. Gullerud AS, Dodds RH, Hampton RW, Dawicke DS (1999) Three-dimensional modeling of ductile crack growth in thin sheet metals: computational aspects and validation. Eng Fract Mech 63(4):347–374

    Article  Google Scholar 

  18. Hampton RW, Nelson D (2003) Stable crack growth and instability prediction in thin plates and cylinders. Eng Fract Mech 70(3–4):469–491

    Article  Google Scholar 

  19. Higuchi R, Makino H, Takeuchi I (2009) New concept and test method on running ductile fracture arrest for high pressure gas pipeline. In: 24th world gas conference, WGC 2009, vol 4. International Gas Union, Buenos Aires, Argentina, pp 2730–2737

    Google Scholar 

  20. Heerens J, Schödel M (2003) On the determination of crack tip opening angle CTOA using light microscopy and δ5 measurement technique. Eng Fract Mech 70(3–4):417–426

    Article  Google Scholar 

  21. James MA, Newman JC (2003) The effect of crack tunnelling on crack growth: experiments and CTOA analyses. Eng Fract Mech 70(3):457–468

    Article  Google Scholar 

  22. Fang J, Zhang J, Wang L (2014) Evaluation of cracking behavior and critical CTOA values of pipeline steel from DWTT specimens. Eng Fract Mech 124(125):18–29

    Article  Google Scholar 

  23. Kanninen MF, Rybicki EF, Stonesifer RB, Broek D, Rosenfield AR, Nalin GT (1979) Elastic–plastic fracture mechanics for two dimensional stable crack growth and instability problems. ASTM STP 668:121–150

    Google Scholar 

  24. Lloyd W, McClintock F (2003) Microtopography for ductile fracture process characterization part 2: application for CTOA analysis. Eng Fract Mech 70(3–4):403–415

    Article  Google Scholar 

  25. Martinelli A, Venzi S (1996) Tearing modulus, J-integral, CTOA and crack profile shape obtained from the load–displacement curve only. Eng Fract Mech 53:263–277

    Article  Google Scholar 

  26. Maxey WA (1981) Dynamic crack propagation in line pipe. In: Sih GC, Mirabile M (eds) Analytical and experimental, fracture mechanics. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 109–123

    Google Scholar 

  27. Maxey WA (1974) 5th symposium on line pipe research, PRCI Catalog No. L30174, Paper J, p 16

    Google Scholar 

  28. Newman JC, James MA, Zerbst U (2003) A review of the CTOA/CTOD fracture criterion. Eng Fract Mech 70:371–385

    Article  Google Scholar 

  29. Newman JC Jr (1984) An elastic–plastic finite element analysis of crack initiation, stable crack growth, and instability. ASTM STP 833:93–117

    Google Scholar 

  30. Oikonomidis F, Shterenlikht A, Truman CE (2013) Prediction of crack propagation and arrest in x100 natural gas transmission pipelines with the strain rate dependent damage model, part 1: a novel specimen for the measurement of high strain rate fracture properties and validation of the SRDD model parameters. Int J Press Vessels Pip 105:60–68

    Article  Google Scholar 

  31. O’Donoghue PE, Kanninen MF, Leung CP, Demofonti GetVenzi S (1997) The development and validation of a dynamic fracture propagation model for gas transmission pipelines. Int J Press Vessels Pip 70:11–25

    Article  Google Scholar 

  32. Pirondi A, Fersini D (2009) Simulation of ductile crack growth in thin panels using the crack tip opening angle. Eng Fract Mech 76(1):88–100

    Article  Google Scholar 

  33. Pluvinage G, Ben Amara M, Capelle J, Azari Z (2015) Crack tip opening angle as a fracture resistance parameter to describe ductile crack extension and arrest in steel pipes under service pressure. Phys Mesomech 18(4):355–369

    Article  Google Scholar 

  34. Pluvinage G, Capelle J, Hadj Méliani M (2015) A review of fracture toughness transferability with constraint. In: Boukharouba T, Pluvinage G, Azouaoui K (eds) Applied mechanics, behavior of materials, and engineering systems—selected papers from 5th Algerian Congress of Mechanics, CAM2015, 25–29 October, El-Oued, Algeria

    Google Scholar 

  35. Rice JR, Sorensen EP (1978) Continuing crack tip deformation and fracture for plane-strain crack growth in elastic–plastic solids. J Mech Phys Solids 26:163–186

    Article  MATH  Google Scholar 

  36. Shih CF, de Lorenzi HG, Andrews WR (1979) Studies on crack initiation and stable crack growth. ASTM STP 668:65–120

    Google Scholar 

  37. Scheider I, Schödel M, Brocks W, Schönfeld W (2006) “Crack propagation analyses with CTOA and cohesive model”: comparison and experimental validation. Eng Fract Mech 73(2):252–263

    Article  Google Scholar 

  38. Sugie E, Matsuoka M, Akiyama H, Mimura T, Kawaguchi Y (1982) A study of shear crack-propagation in gas-pressurized pipelines. J Press Vessel Technol ASME 104(4):338–343

    Article  Google Scholar 

  39. Tran DC (2013) Interaction rupture-flambage, le cas du «splitting» de tube métallique Approche expérimentale et numérique. PhD thesis, INSA de Lyon

    Google Scholar 

  40. Xu S, Petri N, Tyson WR (2009) Evaluation of CTOA from load vs. load-line displacement for C(T) specimen. Eng Fract Mech 76(13):2126–2134

    Article  Google Scholar 

  41. Xu S, Bouchard R, Tyson WR (2007) Simplified single-specimen method for evaluating CTOA. Eng Fract Mech 74(15):2459–2464

    Article  Google Scholar 

  42. Zerbst U, Heinimann M, Donne D, Steglich C (2007) Fracture and damage mechanics modelling of thin-walled structures—an overview. Eng Fract Mech. doi:10.1016/j.engfracmech.2007.10.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Pluvinage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Ben Amara, M., Pluvinage, G., Capelle, J., Azari, Z. (2017). The CTOA as a Parameter of Resistance to Crack Extension in Pipes Under Internal Pressure. In: Pluvinage, G., Milovic, L. (eds) Fracture at all Scales. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32634-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32634-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32633-7

  • Online ISBN: 978-3-319-32634-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics