Skip to main content

Materials as the Simplest Self-Organised Systems, and the Consequences of This

  • Conference paper
  • First Online:
Fracture at all Scales

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 942 Accesses

Abstract

The mechanical testing of a material is a simple procedure that records the response of a specimen to an external effect. The recorded result reflects some kind of damage process that takes place in the material for given external conditions. This damage process can be considered to be the response of a self-organised system. If a single damage process takes place during the testing (or one process predominates), then the simplest testing evaluation procedure would be based on a power law relationship with two parameters, i.e. the response of the material is proportional to the external effect. This approach raises two questions. Why does a single (unknown) damage process require two parameters to characterise it? If the same external conditions are applied for a group of materials and the responses of those materials (the damage process) are also the same, is there a correlation of the power relationship parameters between the materials in the group? These questions will be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pluvinage G, Dhiab A (2002) Notch sensitivity analysis on fracture toughness. Transferability of fracture mechanical characteristics. Ed Y Dlouhy 78:303–320

    Google Scholar 

  2. Akourri O, Elayachi I, Pluvinage G (2007) Stress triaxiality as fracture toughness transferability parameter for notched specimens. Int Rev Mech Eng 1(6)

    Google Scholar 

  3. Akourri O, Elayachi I, Pluvinage G (2007) Stress triaxiality as fracture toughness transferability for notched specimens. Model Optim Mach Build Field 4

    Google Scholar 

  4. Hadj Meliani M, Azari Z, Pluvinage G, Capelle J (2010) Gouge assessment for pipes and associated transferability problem. Eng Fail Anal 17(5):1117–1126

    Article  Google Scholar 

  5. Pluvinage G, Capelle J, Hadj Méliani M (2014) A review of fracture toughness transferability with constraint and stress gradient. Fatigue Fract Eng Mater Struct 37(11):1165–1185

    Article  Google Scholar 

  6. Elazzizi A, Hadj Meliani M, Khelil A, Pluvinage G, Matvienko YG (2015) The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement. Int J Hydrog Energy 40(5):2295–2302

    Article  Google Scholar 

  7. Hadj Meliani M, Azari Z, Al-Qadhi M, Merah N, Pluvinage G (2015) A two-parameter approach to assessing notch fracture behaviour in clay/epoxy nanocomposites. Compos B Eng 80:126–133

    Article  Google Scholar 

  8. Pluvinage G, Ben Amara M, Capelle J, Azari Z (2014) Role of constraint on ductile brittle transition temperature of pipe steel X65. Proc Mater Sci 3:1560–1565

    Article  Google Scholar 

  9. Pluvinage G, Ben Amara M, Capelle J, Azari Z (2014) Role of constraint on the shift of brittle–ductile transition temperature of subsize Charpy specimens. J Fatigue Fract Eng Mater Struct 37(12):1291–1385

    Article  Google Scholar 

  10. Coseru A, Capelle J, Pluvinage G (2014) On the use of Charpy transition temperature as reference temperature for the choice of a pipe steel. Eng Failure Anal 37:110–119

    Article  Google Scholar 

  11. Romvári P, Tóth L, Nagy G (1980) Adalékok a fáradt repedésterjedési sebességét leíró összefüggésekhez. Gép 9(32):325–333 (in Hungarian)

    Google Scholar 

  12. Romvári P, Tóth L, Nagy G (1980) Analiz zakonomernoszti raszprosztranenija usztalosztnüh trescsin v metallah. Problemü Procsnoszti 12:18–28 (in Russian)

    Google Scholar 

  13. Iost A, Cavallini M, Tóth L (1998) Relations entre les coefficients m et C de l’équation de Paris en fatigue-fissuration. La Revue de Métallurgie-CIT/Science et Génie des Matériaux. Février, pp 229–242

    Google Scholar 

  14. Blumenauer H, Pusch G (1993) Tecnische Bruchmechanik. Deutsche Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  15. Tóth L, Lukács J (1997) Reproducibility of the fatigue crack growth resistance of materials and its consequences. In: Romaniv OM, Yarema S, Shevchenko Y (eds) Fracture mechanics, strength and integrity of materials (Jubilee Book Devoted to V.V. Panasyuk). Scientific Society, Ukraine, pp 143–147

    Google Scholar 

  16. Romvári P, Tóth L. (1981) K voproszu povrezsdaemoszti pri raszprosztranenii usztalosztnüh trescsin. Mehanicseszkaja usztaloszt’ metallov, Kiev. Naukova Dumka, pp 64–65, 142–143, 214–215 (in Russian)

    Google Scholar 

  17. Brecht K, Pusch G, Liesenberg O (2002) Bruchmechanische Kennwerte von Temperguβ. Teil 1: Schwarzer Temeperguβ. Konstruiren and Gieβen 27(2)

    Google Scholar 

  18. Hübner PV, Pusch G, Liesenberg O (2002) Bruchmechanische Kennwerte von Temperguβ. Teil 2: Weiβer Temeperguβ. Konstruiren and Gieβen. 28(3)

    Google Scholar 

  19. Tóth L. (1992) On relationships having two parameters used to evaluate the fatigue test results. In: Proceedings of the XIth international colloquium on mechanical fatigue of metals. Kiev, vol 1, pp 91–98

    Google Scholar 

  20. Troshenko VT, Szosznovszkij LA (1987) Szoprotivleni usztaloszti metallaov is szplavov. Csaszt.1. Handbbok

    Google Scholar 

  21. Romvári P, Tóth L, Dehne G, Blumenauer H, Kempe M (1988) Bruchmechanische Untersuchungen zum Erdmüdungsverhalten von Einsatz-stählen. Wissenschaftliche Zeitschrift der Technischen Universität “Otto von Guericke”. Magdeburg Heft 4(32):59–64

    Google Scholar 

  22. Boller C, Seger T (eds) (1987) Materials data for cyclic loading. Materials science monographs, 42A, Unalloyed steels. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  23. Boller C, Seger T (eds) (1987) Materials data for cyclic loading. Materials science monographs, 42B, Low-alloy steels. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  24. Boller C, Seger T (eds) (1987) Materials data for cyclic loading. Materials science monographs, 42C, high-alloy steels. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  25. Boller C, Seger T (eds) (1987) Materials data for cyclic loading. Materials science monographs, 42D, aluminium and titanium alloys. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  26. Troshenko VT, Szosznovszkij LA (1987) Szoprotivleni usztaloszti metallaov is szplavov. Csaszt.2. Handbbok

    Google Scholar 

  27. Tóth L, Krasowsky AJ (1993) A kér parameter korrelációjának Fizikai tartalma az anyagvizsgálati eredmények feldolgozásakor használt kétparaméteres összefüggásekben. Kohászati Lapok 126(10–11):359–363 (in Hungarian)

    Google Scholar 

  28. Krasowsky AJ, Tóth L (1993) Physical background of the empirical relationships of the material strength and fracture properties on time. In: International conference on fracture, ICF 8, Kiev, 1993. június 8–13. Part I, pp 36

    Google Scholar 

  29. Krasowsky AJ, Tóth L (1994) Fiticheskaja priroda empiricheszkij zaviszimoszti kharakterisztik prochnoszti I razrushenija materialov ot vremeni. Problemü Prochnosti 6: 3–9 (in Russian)

    Google Scholar 

  30. Tóth L, Krasowsky AJ (1994) Material testing results in mechanical engineering and their physical background. In: Proceedings of the IIIrd international scientific conference “Achievements in the mechanical and material engineering”, Gliwice, 1994, pp 371–381. Poland, May 17–21, 1995. “Extended Abstract” volume, pp 469–472

    Google Scholar 

  31. Tóth L, Krasowsky AJ (1995) Fracture as the result of self-organised damage process. In: Proceedings of the 14th international scientific conference advanced materials and technologies, Gliwice-Zakopane

    Google Scholar 

  32. Krasowsky AJ, Tóth L (1996) Termodinamicheskaja priroda stepennykh ehmpirichjeskikh zavisimostej kharakteristik prochnosti I razrushenija materialov ot vremeni. Soobschenie 1. Polzuchest I dlitelnaja prochnost. Problemy Prochnosti 2:5–24

    Google Scholar 

  33. Krasowsky AJ, Tóth L (1997) A thermodynamic analysis of the empirical power relationships for creep rate and rupture time. Metall Mater Trans A 28:1831–1843

    Google Scholar 

  34. Krasowsky AJ, Tóth L (1997) Material characterisation required for the reliability assessment of the cyclically loaded engineering structure. Part 1. In Fatigue and failure of materials. NATO ASI series, vol 39. Kluwer Academic Publishers, pp 165–223

    Google Scholar 

Download references

Acknowledgments

The paper is dedicated to the memory of Prof. Stojan Sedmak, a perfect mechanical engineer who performed reliability assessment of engineering components and structures under different operating conditions. From the various items discussed in this paper it directly follows that a reliability assessment of structures operating under the circumstances can be performed through only a single empirical material property. Given the statistical nature of the material parameters, the reliability of lifetime estimates can be directly evaluated from the distribution functions of the single material parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Tóth, L. (2017). Materials as the Simplest Self-Organised Systems, and the Consequences of This. In: Pluvinage, G., Milovic, L. (eds) Fracture at all Scales. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32634-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32634-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32633-7

  • Online ISBN: 978-3-319-32634-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics