Skip to main content

Fatigue Damage Assessment of Bolted Joint Under Different Preload Forces and Variable Amplitude Eccentric Forces for High Reliability

  • Conference paper
  • First Online:
Fracture at all Scales

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Fatigue damage assessments of M10 bolted joint, made of 42CrMo4 heat treatable steel and strength class 10.9, were carried out for different preload forces and variable amplitude eccentric forces for high reliability. Assessments were done with preload forces of 50, 70 and 90 % of force at bolt yield point and without preload force. The nominal approaches from Eurocode standard and VDI 2230 guidelines are mostly used for fatigue assessment. These nominal approaches cannot consider and describe in detail the local stress state at the thread root, which on bolt M10 have a radius of 217 μm. Threaded joints have several peculiarities that complicate the fatigue damage assessments. Range of dispersion was used to describe material cyclic scatter band with Gaussian normal distribution in logarithmic scales. Range of dispersion for notched structure of 42CrMo4 steel was taken from measurements. In order to take multiaxial stress field in thread root with high notch effect, multiaxial fatigue stress criterion based on a critical plane theory was applied for fatigue damage assessment. Critical plane approach is used for estimation of the fatigue damage and fatigue fracture plane position. Decrease of fatigue strength beyond the S-N curve knee point at 2 × 106 cycles was considered for the damage calculation. The main difficulties encountered in threaded joint fatigue damage assessment are due to the uncertainties and therefore, statistics and probability were applied. Assessments were carried out for 50, 97.5, 99, 99.9, 99.99, 99.999, 99.9999, 99.99999 and 99.999999 % survival probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schijve J (2003) Fatigue of structures and materials in the 20th century and the state of the art. Int J Fatigue 25:679–702

    Article  MATH  Google Scholar 

  2. Schijve J (2014) The significance of fatigue crack initiation for predictions of the fatigue limit of specimens and structures. Int J Fatigue 61:39–45

    Article  Google Scholar 

  3. Esaklul KA, Ahmed TM (2009) Prevention of failures of high strength fasteners in use in offshore and subsea applications. Eng Fail Anal 16:1195–1202

    Article  Google Scholar 

  4. Sungkon H (2003) Fatigue analysis of drillstring threaded connections. In: Proceedings of the thirteenth international offshore and polar engineering conference Honolulu, Hawaii, USA, May 25–30, pp 202–208

    Google Scholar 

  5. Shahani AR, Sharifi SMH (2009) Contact stress analysis and calculation of stress concentration factors at the tool joint of a drill pipe. Mater Des 30:3615–3621

    Article  Google Scholar 

  6. Ferjani M, Averbuch D, Constantinescu A (2011) A computational approach for the fatigue design of threaded connections. Int J Fatigue 33:610–623

    Article  Google Scholar 

  7. Hill TH (1992) A unified approach to drillstem failure prevention. SPE Drill Eng 7:254–260

    Article  Google Scholar 

  8. Tafreshi A, Dover WD (1993) Stress analysis of drillstring threaded connections using the finite element method. Int J Fatigue 15:429–438

    Article  Google Scholar 

  9. Bertini L, Beghini M, Santus C, Baryshnikov A (2008) Resonant test rigs for fatigue full scale testing of oil drill string connections. Int J Fatigue 30:978–988

    Article  Google Scholar 

  10. Ciavarella M, Meneghetti G (2004) On fatigue limit in the presence of notches: classical vs. recent unified formulations. Int J Fatigue 26:289–298

    Article  Google Scholar 

  11. Susmel L, Taylor D (2003) Two methods for predicting the multiaxial fatigue limits of sharp notches. Fatigue Fract Eng Mater Struct 26:821–833

    Article  Google Scholar 

  12. Naik RA, Lanning DB, Nicholas T, Kallmeyer AR (2005) A critical plane gradient approach for the prediction of notched HCF life. Int J Fatigue 27:481–492

    Article  Google Scholar 

  13. Hofmann F, Bertolino G, Constantinescu A, Ferjani M (2007) A multiscale discussion of fatigue and shakedown for notched structures. Theor Appl Fract Mech 48:140–151

    Article  Google Scholar 

  14. Hofmann F, Bertolino G, Constantinescu A, Ferjani M (2009) A discussion at the mesoscopic scale of the stress-gradient effects in high cycle fatigue based on the Dang Van criterion. J Mech Mater Struct 4:293–308

    Article  Google Scholar 

  15. Fares Y, Chaussumier M, Daidie A, Guillot J (2006) Determining the life cycle of bolts using a local approach and the Dang Van criterion. Fatigue Fract Eng Mater Struct 29:588–596

    Article  Google Scholar 

  16. McEvily AJ (1990) Atlas of stress corrosion and corrosion fatigue curves. ASM International, Materials Park, OH

    Google Scholar 

  17. Bickford JH (1990) An introduction to the design and behavior of bolted joints, 2nd edn. Marcel Dekker, New York, NY

    Google Scholar 

  18. ASME/ANSI B16, Standards of pipes and fittings

    Google Scholar 

  19. API Spec 6A (2004) Specification for wellhead and christmas tree equipment. American Petroleum Institute, Washington, DC

    Google Scholar 

  20. Review of Repairs to Offshore Structures and Pipelines,1994. Publication 94/102, Marine Technology Directorate, UK

    Google Scholar 

  21. Cho SS, Chang H, Lee KW (2009) Dependence of fatigue limit of high-tension bolts on mean stress and ultimate tensile strength. Int J Automot Technol 10:475–479

    Article  Google Scholar 

  22. Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6:667–672

    Article  Google Scholar 

  23. Brasiliense LBC, Lazaro BCR, Reyes PM, Newcomb AGUS, Turner JL, Crandall DG, Crawford NR (2013) Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine J 13:947–956

    Article  Google Scholar 

  24. Novoselac S, Ergić T, Kozak D, Sertić J, Pacak M (2013) Influence of dental implant screw preload force on high-cycle fatigue. In: Karšaj I, Jarak T, Stubica D (eds) Proceedings of 5th Croatian society of mechanics, Croatia, 6–7 June, pp 137–142 (in Croatian)

    Google Scholar 

  25. Novoselac S, Ergić T, Kozak D, Baškarić T (2014) Structural durability of dental implants. In: Jelenić G, Gaćeša M (eds) Proceedings of 6th Croatian society of mechanics, Rijeka, Croatia, 29–30 May, pp 251–256 (in Croatian)

    Google Scholar 

  26. Eurocode No. 3 (1993) Design of steel constructions, Part 1. Beuth-Verlag, Berlin

    Google Scholar 

  27. Verein Deutscher Ingenieure (2003) VDI 2230 Guidelines

    Google Scholar 

  28. Schneider R, Wuttke U, Berger C (2010) Fatigue analysis of threaded connections using the local strain approach. Proc Eng 2:2357–2366

    Article  Google Scholar 

  29. Dixon DL, Breeding LC, Sadler JP, McKay ML (1995) Comparison of screw loosening, rotation, and deflection among three implant designs. J Prosthet Dent 74:270–278

    Article  Google Scholar 

  30. Patterson EA, Kenny B (1986) A modification to the theory for the load distribution in conventional nuts and bolts. J Strain Anal Eng Des 21:17–23

    Article  Google Scholar 

  31. Sopwith DG (1948) The distribution of load in screw threads. Inst Mech Eng Proc 159:373–383

    Article  Google Scholar 

  32. D’Eramo M, Cappa P (1991) An experimental validation of load distribution in screw threads. Exp Mech 31:70–75

    Article  Google Scholar 

  33. Kenny B, Patterson E (1985) Load and stress distribution in screw threads. Exp Mech 25:208–213

    Article  Google Scholar 

  34. Wang W, Marshek KM (1996) Determination of load distribution in a threaded connector with yielding threads. Mech Mach Theory 31:229–244

    Article  Google Scholar 

  35. Croccolo D, Agostinis M, Vincenzi N (2012) A contribution to the selection and calculation of screws in high duty bolted joints. Int J Press Vessels Pip 96–97:38–48

    Article  Google Scholar 

  36. Griza S, da Silva MEG, dos Santos SV, Pizzio E, Strohaecker TR (2013) The effect of bolt length in the fatigue strength of M24x3 bolt studs. Eng Fail Anal 34:397–406

    Article  Google Scholar 

  37. Patterson EA (1990) A comparative study of methods for estimating bolt fatigue limits. Fatigue Fract Eng Mater Struct 13:59–81

    Article  Google Scholar 

  38. Liao R, Sun Y, Liu J, Zhang W (2011) Applicability of damage models for failure analysis of threaded bolts. Eng Fract Mech 78:514–524

    Article  Google Scholar 

  39. Susmel L, Tovo R (2011) Estimating fatigue damage under variable amplitude multiaxial fatigue loading. Fatigue Fract Eng Mater Struct 34:1053–1077

    Article  Google Scholar 

  40. Łagoda T, Macha E (1994) Estimated and experimental fatigue lives of 30CrNiMo8 steel under in-and out-of-phase combined bending and torsion with variable amplitude. Fatigue Fract Eng Mater Struct 11:1307–1318

    Google Scholar 

  41. Morel F (2000) A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading. Int J Fatigue 22:101–119

    Article  Google Scholar 

  42. Carpinteri A, Spagnoli A, Vantadori S (2003) A multiaxial fatigue criterion for random loading. Fatigue Fract Eng Mater Struct 26:515–522

    Article  Google Scholar 

  43. Łagoda T, Ogonowski P (2005) Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane. Mat-wiss u Werkstofftech 36:429–437

    Article  Google Scholar 

  44. Marciniak Z, Rozumek D, Macha E (2008) Fatigue lives of 18G2A and 10HNAP steels under variable amplitude and random non-proportional bending with torsion. Int J Fatigue 30:800–813

    Article  Google Scholar 

  45. Matake T (1977) An explanation on fatigue limit under combined stress. Bull JSME 20:257–263

    Article  Google Scholar 

  46. McDiarmid DL (1994) A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction. Fatigue Fract Eng Mater Struct 17:1475–1484

    Article  Google Scholar 

  47. Susmel L, Lazzarin P (2002) A bi-parametric modified Wöhler curve for high cycle multiaxial fatigue assessment. Fatigue Fract Eng Mater Struct 25:63–78

    Article  Google Scholar 

  48. Susmel L, Petrone N (2003) Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and out-of-phase biaxial loadings. In: Carpinteri A, de Freitas M, Spagnoli A (eds) Biaxial and multiaxial fatigue and fracture. Elsevier and ESIS, Oxford, pp 83–104

    Google Scholar 

  49. Lazzarin P, Susmel L (2003) A stress-based method to predict lifetime under multiaxial fatigue loadings. Fatigue Fract Eng Mater Struct 26:1171–1187

    Article  Google Scholar 

  50. Forsyth PJE (1961) A two stage process of fatigue crack growth. In: McDowell DL (eds) Proceedings of the crack propagation symposium, Cranfield, pp 76–94

    Google Scholar 

  51. Jahed H, Varvani-Farahani A (2006) Upper and lower fatigue life limits model using energy-based fatigue properties. Int J Fatigue 28:467–473

    Article  MATH  Google Scholar 

  52. Zhang G (2012) Method of effective stress for fatigue: part I—a general theory. Int J Fatigue 37:17–23

    Article  Google Scholar 

  53. Novoselac S, Kozak D, Ergić T, Šimić I (2014) Influence of stress gradients on bolted joint fatigue behaviour under different preloads and cyclic loads ratio. Struct Integrity Life 14:3–16

    Google Scholar 

  54. Chen JJ, Shih YS (1999) A study of the helical effect on the thread connection by three dimensional finite element analysis. Nucl Eng Des 191:109–116

    Article  Google Scholar 

  55. Haibach E (2006) Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung, 3rd edn. Springer, Berlin

    Google Scholar 

  56. Wiegand H, Kloos KH, Thomala W (2007) Schraubenverbindungen: Grundlagen, Berechnung, Eigenschaften, Handhabung, 5th edn. Springer, Berlin

    Google Scholar 

  57. Forschungskuratorium Maschinenbau (FKM) (2003) Analytical strength assessment of components in mechanical engineering, 5th edn. VDMA Verlag GmbH

    Google Scholar 

  58. ECS Steyr. FemFat 4.7 (2007) Theory manual. St. Valentin

    Google Scholar 

  59. Pyttel B, Schwerdt D, Berger C (2011) Very high cycle fatigue—is there a fatigue limit? Int J Fatigue 33:49–58

    Article  Google Scholar 

  60. Karolczuk A, Macha E (2004) Critical and fracture plane orientations under multiaxial cyclic and random loading. Arch Mech Eng 51:415–435

    Google Scholar 

  61. Karolczuk A, Macha E (2005) Critical planes in multiaxial fatigue of materials, monograph. Fortschritt-Berichte VDI, Mechanik/Bruchmechanik, reihe 18, nr. 298. Dusseldorf, VDI Verlag, p 204

    Google Scholar 

  62. Karolczuk A, Macha E (2005) Critical planes in multiaxial fatigue. Mater Sci Forum 482:109–114

    Article  MATH  Google Scholar 

  63. Karolczuk A, Macha E (2005) A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int J Fract 134:267–304

    Article  MATH  Google Scholar 

  64. Karolczuk A, Macha E (2008) Selection of the critical plane orientation in two parameter multiaxial fatigue failure criterion under combined bending and torsion. Eng Fract Mech 75:389–403

    Article  Google Scholar 

  65. Macha E, Niesłony A (2012) Critical plane fatigue life models of materials and structures under multiaxial stationary random loading: the state-of-the-art in Opole Research Centre CESTI and directions of future activities. Int J Fatigue 39:95–102

    Article  Google Scholar 

  66. Bedkowski W, Macha E (1987) Maximum normal stress fatigue criterion applied to Random Triaxial Stress State. Theor Appl Fract Mech 7:89–107

    Article  Google Scholar 

  67. ECS Steyr. FemFat 4.8 (2007) MAX Manual. St. Valentin

    Google Scholar 

  68. Bathias C (1999) There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct 22:559–565

    Article  Google Scholar 

  69. Eurocode No. 9 (1998) Design of aluminium structures, part 2. Beuth-Verlag, Berlin

    Google Scholar 

  70. Sonsino CM (2007) Course of SN-curve especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue 29:2246–2258

    Article  Google Scholar 

  71. Dowling N (1972) Fatigue failure predictions for complicated stress–strain histories. J Mater 7:71–78

    MathSciNet  Google Scholar 

  72. Endo T (1974) Damage evaluation of metals for random or varying loading—three aspects of the rainflow method. Proceedings of the symposium on mechanical behaviour of materials. Society of Materials Science, Japan, pp 372–380

    Google Scholar 

  73. Standard Practice for Cycle Counting in Fatigue Analysis (1990) ASTM Standard E 1049-1090. American Society for Testing and Materials

    Google Scholar 

  74. Haibach E, Matschke C (1981) Normierte Wöhlerlinien für ungekerbte und gekerbte Formelemente aus Baustahl. Stahl Eisen 101:21–27

    Google Scholar 

  75. Amstutz H, Olivier R (2011) Fatigue strength of shear loaded welded joints according to the notch stress concept. Mat-wiss u Werkstofftech 42:254–262

    Google Scholar 

  76. Sonsino CM (2009) Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry. Int J Fatigue 31:88–101

    Article  Google Scholar 

  77. Eibl M, Sonsino CM (2001) Stand der Technik zur Schwingfestigkeitsberechnung von laserstrahl-geschweißten Dünnblechen aus Stahl. Report 668. DVM, Berlin, pp 155–71

    Google Scholar 

  78. Eibl M, Sonsino CM, Kaufmann H, Zhang G (2003) Fatigue assessment of laser welded thin sheet aluminium. Int J Fatigue 25:719–731

    Article  Google Scholar 

  79. Majzoobi GH, Farrahi GH, Habibi N (2005) Experimental evaluation of the effect of thread pitch on fatigue life of bolts. Int J Fatigue 27:189–196

    Article  Google Scholar 

  80. Berger C, Pyttel B, Trossmann T (2006) Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys. Int J Fatigue 28:1640–1646

    Article  MATH  Google Scholar 

  81. Horn NJ, Stephens RI (2006) Influence of cold rolling threads before or after heat treatment on high strength bolts for different fatigue preload conditions. J ASTM Int 3:95–115

    Article  Google Scholar 

  82. Knez M, Glodež S, Kramberger J (2009) Fatigue assessment of piston rod threaded end. Eng Fail Anal 16:1977–1982

    Article  Google Scholar 

  83. Macdonald KA, Deans WF (1995) Stress analysis of drillstring threaded connections using the finite element method. Eng Fail Anal 2:1–30

    Article  Google Scholar 

  84. Knight MJ, Brennan FP, Dover WD (2003) Effect of residual stress on ACFM crack measurements in drill collar threaded connections. NDT&E Int 37:337–343

    Article  Google Scholar 

  85. Hück M, Thrainer L, Schütz W (1981) Berechnung von Wöhler-Linien für Bauteile aus Stahl, Stahlguß und Grauguß, synthetische Wöhler-Linien. VDEh-Bericht ABF 11

    Google Scholar 

  86. Hobbacher A (2009) Recommendations for fatigue design of welded joints and components, Doc. IIW-1823-07 (ex-doc. XIII-2151r4-07/XV-1254r4-07), WRC Bulletin 520, Welding Research Council, Inc., New York

    Google Scholar 

  87. Sonsino CM (2009) A consideration of allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept with the reference radii rref = 1.00 and 0.05 mm. Weld World 53:64–75

    Article  Google Scholar 

  88. Sonsino CM (1994) Über den Einfluss von Eigenspannungen, Nahtgeometrie und mehrachsigen Spannungszuständen auf die Betriebsfestigkeit geschweißter Konstruktionen aus Baustählen. Mat-wiss u Werkstofftech 25:97–109

    Article  Google Scholar 

  89. Ritter W (1994) Kenngrßen der Wöhlerlinien für Schweißverbindungen aus Stählen. Inst. für Stahlbau und Werkstoffmechanik der TU DarmstadtHeft 53, Dissertation TU Darmstadt

    Google Scholar 

  90. Schaumann P, Marten F (2009) Fatigue resistance of high strength bolts with large diameters. In: Proceedings of the international symposium for steel structures ISSS, 12.-13.03., Seoul, South Korea, pp 1–8

    Google Scholar 

  91. DNV-RP-C203 (2011) Fatigue Design of Offshore Steel Structures. Det Norske Veritas AS

    Google Scholar 

  92. BS EN 13445-3:2009 (2009) Unfired pressure vessels. BSI

    Google Scholar 

  93. KTA-Geschaeftsstelle c/o BfS, Germany (2014)

    Google Scholar 

  94. Svensson T (1997) Prediction uncertainties at variable amplitude fatigue. Int J Fatigue 19:295–302

    Article  Google Scholar 

  95. Tovo R (2001) On the fatigue reliability evaluation of structural components under service loading. Int J Fatigue 23:587–598

    Article  Google Scholar 

  96. Echard B, Gayton N, Bignonnet A (2013) A reliability analysis method for fatigue design. Int J Fatigue 59:292–300

    Article  Google Scholar 

  97. Schijve J (1994) Fatigue predictions and scatter. Fatigue Fract Eng Mater Struct 17:381–396

    Article  Google Scholar 

  98. Sonsino CM (2007) Fatigue testing under variable amplitude loading. Int J Fatigue 29:1080–1089

    Article  MATH  Google Scholar 

  99. DNV (1996) Guideline for offshore structural reliability analysis. Det Norske Veritas, Report no. 95-3204

    Google Scholar 

  100. DNV-OS-C101 (2011) Design of offshore steel structures, general (LRFD method). Det Norske Veritas

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stipica Novoselac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Novoselac, S., Kozak, D., Ergić, T., Damjanović, D. (2017). Fatigue Damage Assessment of Bolted Joint Under Different Preload Forces and Variable Amplitude Eccentric Forces for High Reliability. In: Pluvinage, G., Milovic, L. (eds) Fracture at all Scales. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32634-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32634-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32633-7

  • Online ISBN: 978-3-319-32634-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics