Skip to main content

Spatial Distribution and Main Characteristics of Alpine Permafrost from Southern Carpathians, Romania

  • Chapter
  • First Online:
Landform Dynamics and Evolution in Romania

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

The sporadic permafrost specific to the Southern Carpathians is accommodated in three main features at sites with commonly low solar radiation—(i) rock glaciers (>1950 m altitude), (ii) talus slopes, and (iii) shaded rock walls (>2400 m)—with a net prevalence of the former category. Due to its marginal character, the alpine permafrost in Southern Carpathians develops only in the most favorable conditions which consist in cold microclimates imposed by topography (low solar radiation, high altitude), but also in specific ground surface characteristics which promote ground overcooling. Among all, coarse openwork debris is the most favorable land cover type for permafrost development because of the cooling effect it exerts on the underground, especially via air ventilation during cold snow free interval (fall and early winter) and air stratification (low conductivity) under thick snow cover. Because of the large surfaces covered by coarse debris at high altitudes, the granitic massifs of Retezat and Parâng present the most extensive areas with probable permafrost from the Southern Carpathians. Instead, the fine debris specific to crystalline ranges of Făgăraş and Iezer—Păpușa or the small and thin conglomeratic debris of Bucegi massif inhibit nowadays the permafrost formation with very few exceptions. Although most rock glaciers prove to be relict, the present-day climate supports the existence of permafrost into thick and coarse debris (intact rock glaciers and lower sectors of the talus slopes) especially at altitudes higher than 2000 m. The geophysical surveys from granitic rock glaciers situated at 1950–2100 m indicate a thin (<10 m) undersaturated permafrost layer located under a thick (8–10 m) active layer. At altitudes higher than 2100 m, permafrost seems to be thicker (>10–20 m) and sometime supersaturated in ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenson LU, Hoelzle M, Springman SM (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafrost Periglac Process 13:117–135

    Article  Google Scholar 

  • Balch ES (1900) Glaciers or freezing caverns. Allen, Lane & Scott, Philadelphia

    Google Scholar 

  • Ballantyne CK, Kirkbride MP (1986) The characteristics and significance of some Lateglacial protalus ramparts in upland Britain. Earth Surf Proc Land 11(6):659–671

    Google Scholar 

  • Barsch D (1996) Rockglaciers: indicators for the present and former geoecology in high mountain environments. Springer Series in Physical Environment 16. Springer, New York

    Google Scholar 

  • Bernhard L, Sutter F, Haeberli W, Keller F (1998) Processes of snow/permafrost interactions at a high mountain site, Murtèl/Corvatsch, Eastern Swiss Alps. In: Proceedings of the seventh international conference on permafrost, vol 55, Yellowknife, Collection Nordicana, pp 35–41

    Google Scholar 

  • Berthling I (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131:98–106

    Article  Google Scholar 

  • Bommer C, Phillips M, Arenson LU (2010) Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafrost Periglac Process 21:97–104

    Article  Google Scholar 

  • Brenning A, Gruber S, Hoelzle M (2005) Sampling and statistical analysis of BTS measurements. Permafrost Periglac Process 16(3):231–240

    Article  Google Scholar 

  • Buytaert W, Celleri R, Willems P, De Bièvre B, Wyseure G (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329(3–4):413–421

    Article  Google Scholar 

  • Delaloye R (2004) Contribution à l’étude du pergélisol de montagne en zone marginale. PhD thesis, University of Fribourg, GeoFocus 10

    Google Scholar 

  • Delaloye R, Lambiel C (2005) Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps). Nor Geogr Tidsskr 59:194–203

    Article  Google Scholar 

  • Delaloye R, Reynard E, Lambiel C, Marescot L, Monnet R (2003) Thermal anomaly in a cold scree slope (Creux du Van, Switzerland). In: Phillips M, Springman SM, Arenson LU (eds) Proceedings of eight international conference of permafrost, Zürich, 1. Balkema, Lisse, pp 175–180

    Google Scholar 

  • Delaloye R, Morard S, Barboux C, Abbet D, Gruber V, Riedo M, Gachet S (2013) Rapidly moving rock glaciers in Mattertal. In: Graf C (ed) Mattertal—ein Tal in Bewegung. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft 29. Juni–1. Juli 2011, St. Niklaus. Birmensdorf, Eidg. Forschungsanstalt WSL, pp 21–31

    Google Scholar 

  • Dimitrov P, Gikov A (2011) Relict rock glaciers identification and mapping in Pirin mountain using aerial and satellite images. In: Proceedings of the seventh scientific conference: space, ecology, safety, Sofia, pp 206–263

    Google Scholar 

  • Dobiński W (1997) Distribution on mountain permafrost in the high Tatra based on freezing and thawing indices. Biul Peryglac 36:29–36

    Google Scholar 

  • Etzelmüller B, Berthling I, Sollid JL (2003) Aspects and concepts on the geomorphological significance of Holocene permafrost in southern Norway. Geomorphology 52:87–104

    Article  Google Scholar 

  • Frauenfelder R, Allgöver B, Haeberli W, Hoelzle M (1998) Permafrost investigations with GIS—a case study in the Fletschhorn area, Wallis, Swiss Alps. In: Proceedings of seventh international conference on permafrost, vol 55, Yellowknife, Canada, Collection Nordicana, pp 291–295

    Google Scholar 

  • Fukui K (2003) Permafrost and surface movement of an active protalus rampart in the Kuranosuke Cirque, the northern Japanese Alps. In: Phillips M, Springman SM, Arenson LU (eds), Proceedings of Eight International Conference of Permafrost, vol 1, Zürich, Balkema, Lisse, pp 265–270

    Google Scholar 

  • Gądek B (2014) Climatic sensitivity of the non-glaciated mountains cryosphere (Tatra Mts., Poland and Slovakia). Global Planet Change 121:1–8

    Article  Google Scholar 

  • Gądek B, Kędzia S (2008) Winter ground surface temperature regimes in the zone of sporadic discontinuous permafrost, Tatra Mountains (Poland and Slovakia). Permafrost Periglac Process 19:315–321

    Article  Google Scholar 

  • Gikov A, Dimitrov P (2010) Identification and mapping of the relict rock glaciers in the Rila Mountain using aerial and satellite images. In: Proceedings of the sixth scientific conference: space, ecology, safety, Sofia, pp 252–259

    Google Scholar 

  • Gómez-Ortiz A, Oliva M, Salvador-Franch F, Salvà-Catarineu M, Palacios D, de Sanjosé-Blasco JJ, Tanarro-García LM, Galindo-Zaldívar J, de Galdeano CS (2014) Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006 to 2013 as a response to recent climate trends. Solid Earth 5:979–993

    Article  Google Scholar 

  • Gruber S (2005) Mountain permafrost: transient spatial modeling, model verification and the use of remote sensing. PhD thesis, University of Zürich

    Google Scholar 

  • Gruber S, Haeberli W (2009) Mountain permafrost. In: Margesin R (ed) Permafrost soils biology series. Springer, Berlin

    Google Scholar 

  • Gruber S, Hoelzle M (2001) Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data. Permafrost Periglac Process 12:69–77

    Article  Google Scholar 

  • Gruber S, Hoelzle M (2008) The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism. In: Kane DL, Hinkel K (eds) Proceedings of the ninth international conference on permafrost, Institute of Northern Engineering, University of Alaska, Fairbanks, pp 557–561

    Google Scholar 

  • Gruber S, King L, Kohl T, Herz T, Haeberli W, Hoelzle M (2004) Interpretation of geothermal profiles perturbed by topography: the alpine permafrost boreholes at Stockhorn Plateau, Switzerland. Permafrost Periglac Process 15:349–357

    Article  Google Scholar 

  • Gubler S, Fiddes J, Keller M, Gruber S (2011) Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain. The Cryosphere 5:431–443

    Article  Google Scholar 

  • Gude M, Dietrich S, Mäusbacher R, Hauck C, Molenda R, Ruzicka V, Zacharda M (2003) Probable occurrence of sporadic permafrost in non-alpine scree slopes in central Europe. In: Phillips M, Springman SM, Arenson LU (eds) Proceedings of the eighth international conference on permafrost, Zürich, Balkema, Lisse, pp 331–336

    Google Scholar 

  • Haeberli W (1973) Die basis-temperature der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen. Zeitschrift für Gletcherkunde und Glazialgeologie 9:221–227

    Google Scholar 

  • Haeberli W (1985) Creep of mountain permafrost: internal structure and flow of alpine rock glaciers, Versuchanst. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich 77:142

    Google Scholar 

  • Haeberli W, Patzelt G (1982) Permafrostkartierung im gebiet der Hochenbenkar-Blockgletscher, Obergurgl, Ötztaler Alpen. Z Gletscherk Glazialgeol 18(2):127–150

    Google Scholar 

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Vonder Mühll D (2006) Permafrost creep and rock glacier dynamics. Permafrost Periglac Process 17(3):189–214

    Article  Google Scholar 

  • Hanson S, Hoelzle M (2004) The thermal regime of the active layer at the Murtèl rock glacier based on data from 2002. Permafrost Periglac Process 15(3):273–282

    Article  Google Scholar 

  • Harris SA, Pedersen DE (1998) Thermal regime beneath coarse blocky materials. Permafrost Periglac Process 9:107–120

    Article  Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Mühll DV (2009) Permafrost and climate in Europe: monitoring and modeling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92:117–171

    Article  Google Scholar 

  • Hasler A, Gruber S, Haeberli W (2011) Temperature variability and offset in steep alpine rock and ice faces. The Cryosphere 5(4):977–988

    Google Scholar 

  • Hoelzle M, Wegmann M, Krummenacher B (1999) Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps. Permafrost Periglac Process 10:113–124

    Article  Google Scholar 

  • Humlum O (1996) Origin of rock glaciers: observations from Mellemfjord, Disko Island, central West Greenland. Permafrost Periglac Process 7:361–380

    Article  Google Scholar 

  • Ichim I (1978) Preliminary observations on the rock glacier phenomenon in the Romanian Carpathians. Revue Roumaine de Géologie, Géophysique et Géographie 23(2):295–299

    Google Scholar 

  • Ikeda A, Matsuoka N (2002) Degradation of talus-derived rock glaciers in the Upper Engadin, Swiss Alps. Permafrost Periglac Process 13:145–161

    Article  Google Scholar 

  • Ikeda A, Matsuoka N (2006) Pebbly versus bouldery rock glaciers: morphology, structure and processes. Geomorphology 73:279–296

    Article  Google Scholar 

  • Imhof M (1996) Modelling and verification of the permafrost distribution in the Bernese Alps (Western Switzerland). Permafrost Periglac Process 7:267–280

    Article  Google Scholar 

  • Isaksen K, Hauck C, Gudevang E, Ødegård RS, Sollid JL (2002) Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data. Nor Geogr Tidsskr 56(2):122–136

    Article  Google Scholar 

  • Isaksen K, Sollid JL, Holmlund P, Harris C (2007) Recent warming of mountain permafrost in Svalbard and Scandinavia. J Geophys Res 112:F02S04. doi:10.1029/2006JF000522

  • Ishikawa M (2003) Thermal regimes at the snow-ground interface and their implication for permafrost investigation. Geomorphology 52:105–120

    Article  Google Scholar 

  • Julián A, Chueca J (2007) Permafrost distribution from BTS measurements (Sierra de Telera, Central Pyrenees, Spain): assessing the importance of solar radiation in a middle elevation shaded mountainous area. Permafrost Periglac Process 18:137–149

    Article  Google Scholar 

  • Juliussen H, Humlum O (2007) Towards a TTOP ground temperature model for mountainous terrain in central-eastern Norway. Permafrost Periglac Process 18:161–184

    Article  Google Scholar 

  • Kędzia S (2014) Are there any active rock glaciers in the Tatra Mountains? Studia Geomorphologica Carpatho Balcanica XLVIII:5–16

    Google Scholar 

  • Keller G, Tamás M (2003) Enhanced ground cooling in periods with thin snow cover in the Swiss National Park. In: Phillips M, Springman SM, Arenson LU (eds) Proceedings of eight international conference of permafrost Zürich, 1. Balkema, Lisse, pp 531–536

    Google Scholar 

  • Kern Z, Balogh D, Nagy B (2004) Investigations for the actual elevation of the mountain permafrost zone on postglacial landforms in the head of Lăpuşnicu Mare Valley, and the history of deglaciation of Ana Lake—Judele Peak region, Retezat Mountains, Romania. Analele Universităţii de Vest din Timişoara, GEOGRAFIE 14:119–132

    Google Scholar 

  • Kłapyta P (2013) Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra Mountains, Slovakia. Catena 111:104–121

    Article  Google Scholar 

  • Kneisel C, Hauck C, Vonder Mühll D (2000) Permafrost below the timberline confirmed and characterized by geoelectrical resistivity measurements, Beaver Valley, Eastern Swiss Alps. Permafrost Periglac Process 11:295–304

    Article  Google Scholar 

  • Kneisel C, Hauck C, Fortier R, Moorman B (2008) Advances in geophysical methods for permafrost investigations. Permafrost Periglac Process 19:157–178

    Article  Google Scholar 

  • Lambiel C, Pieracci K (2008) Permafrost distribution in talus slopes located within the alpine periglacial belt, Swiss Alps. Permafrost Periglac Process 19:293–304

    Article  Google Scholar 

  • Lewkowicz AG, Ednie M (2004) Probability mapping of mountain permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada. Permafrost Periglac Process 15:67–80

    Article  Google Scholar 

  • Lugon R, Delaloye R, Serrano E, Reynard E, Lambiel C, González Trueba JJ (2004) Permafrost and little ice age relationships, Posets massif, Central Pyrenees, Spain. Permafrost Periglac Process 15:207–220

    Article  Google Scholar 

  • Magnin F, Deline P, Ravanel L, Noetzli J, Pogliotti P (2015) Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m asl). The Cryosphere 9(1):109–121

    Google Scholar 

  • Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28:309–328

    Article  Google Scholar 

  • Maurer H, Hauck C (2007) Instruments and methods geophysical imaging of alpine rock glaciers. J Glaciol 53(180):110–120

    Article  Google Scholar 

  • Mîndrescu M, Evans IS, Cox NJ (2010) Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods. J Quat Sci 25(6):875–888

    Article  Google Scholar 

  • Morard S, Delaloye R, Dorthe J (2008) Seasonal thermal regime of a mid-latitude ventilated debris accumulation. In: Proceedings of the ninth international conference on permafrost, Fairbanks, pp 1233–1238

    Google Scholar 

  • Moscicki J, Kędzia S (2001) Investigation of mountain permafrost in the Kozia Dolinka valley, Tatra Mountains, Poland. Nor Geogr Tidsskr 55:1–6

    Article  Google Scholar 

  • Mott R, Schirmer M, Bavay M, Grünewald T, Lehning M (2010) Understanding snow-transport processes shaping the mountain snow-cover. The Cryosphere 4:545–559

    Article  Google Scholar 

  • Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W (2007) Three‐dimensional distribution and evolution of permafrost temperatures in idealized high‐mountain topography. J Geophysical Research: Earth Surf 112(F2)

    Google Scholar 

  • Onaca A, Urdea P, Ardelean C (2013) Internal structure and permafrost characteristics of the rock glaciers of Southern Carpathians (Romania) assessed by geoelectrical soundings and thermal monitoring. Geogr Ann Ser A Phys Geogr 95(3):249–266

    Article  Google Scholar 

  • Onaca A, Ardelean AC, Urdea P, Ardelean F, Sîrbu F (2015) Detection of mountain permafrost by combining conventional geophysical methods and thermal monitoring in the Retezat Mountains, Romania. Cold Reg Sci Technol 119:111–123

    Article  Google Scholar 

  • Otto J-C, Keuschnig M, Götz J, Marbach M, Schrott L (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information—an example from the Glatzbach catchment, Austrian Alps. Geogr Ann Ser A Phys Geogr 94:43–57

    Article  Google Scholar 

  • Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: consequences for future monitoring strategies. Geomorphology 56:111–122

    Google Scholar 

  • Popescu (2015) Fenomenologia permafrostului din Carpații Românești. PhD thesis, University of Bucharest (in Romanian)

    Google Scholar 

  • Popescu R, Vespremeanu-Stroe A, Onaca A, Cruceru N (2015) Permafrost research in the granitic massifs of Southern Carpathians (Parâng Mountains). Z Geomorphol 59(1):1–20

    Article  Google Scholar 

  • Popescu R, Vespremeanu-Stroe A, Vasile M, Nedelea A, Cruceru N (submited) Permafrost state in the marginal periglacial conditions of Southern Carpathians, Romania. The Cryosphere

    Google Scholar 

  • Ribolini A, Fabre D (2006) Permafrost existence in rock glaciers of the Argentera Massif, Maritime Alps, Italy. Permafrost Periglac Process 17:49–63

    Article  Google Scholar 

  • Rödder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175:176–189

    Article  Google Scholar 

  • Ruszkiczay-Rüdiger S, Kern Z, Urdea P, Braucher R, Madarász B, Schimmelpfennig I, ASTER Team (2015) Revised deglaciation history of the Pietrele-Stânişoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quat Int. doi:10.1016/j.quaint.2015.10.085

  • Sandu I, Pescaru V, Poiană I, Geicu A, Cândea I, Țâștea D (2008) Clima României. Editura Academiei Române, Bucharest (in Romanian)

    Google Scholar 

  • Sass O, Krautblatter M (2007) Debris flow-dominated and rockfall-dominated talus slopes: genetic models derived from GPR measurements. Geomorphology 86:176–192

    Article  Google Scholar 

  • Sawada Y, Ishikawa M, Ono Y (2003) Thermal regime of sporadic permafrost in a block slope on Mt. Nishi-Nupukaushinupuri, Hokkaido Island, Northern Japan. Geomorphology 52:121–130

    Article  Google Scholar 

  • Scapozza C, Lambiel C, Baron L, Marescot L, Reynard E (2011) Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps. Geomorphology 132(3–4):208–221

    Article  Google Scholar 

  • Schneider S, Hoelzle M, Hauck C (2012) Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps. The Cryosphere 6:517–531

    Article  Google Scholar 

  • Serrano E, Agudo C, de Pison EM (1999) Rock glaciers in the Pyrenees. Permafrost Periglac Process 10:101–106

    Article  Google Scholar 

  • Serrano E, San José JJ, Agudo C (2006) Rock glacier dynamics in a marginal periglacial high mountain environment: flow, movement (1991–2000) and structure of the Argualas rock glacier, the Pyrenees. Geomorphology 74:285–296

    Article  Google Scholar 

  • Sîrcu I (1971) Geografia fizică a R.S.România. Editura Didactică și Pedagogică, Bucureşti (in Romanian)

    Google Scholar 

  • Sîrcu I, Sficlea V (1956) Cîteva observaţii geomorfologice în munţii Parîngului şi ai Şureanului. Analele Ştiințifice ale Universității “Al. I. Cuza” din Iaşi, II- Ştiinţe Naturale-Geografie 2:387–402 (in Romanian)

    Google Scholar 

  • Sorg A, Kääb A, Roesch A, Bigler C, Stoffel M (2015) Contrasting responses of Central Asian rock glaciers to global warming. Sci Rep 5:1–6

    Google Scholar 

  • Stiegler C, Rode M, Sass O, Otto JC (2014) An undercooled scree slope detected by geophysical investigations in sporadic permafrost below 1000 m ASL, central Austria. Permafrost Periglac Process 25(3):194–207

    Article  Google Scholar 

  • Tanarro LM, Hoelzle M, Garcia A, Ramos A, Gruber S, Gómez Ortiz A, Piquer M, Palacios D (2001) Permafrost distribution modelling in the mountains of the Mediterranean: Corral del Veleta, Sierra Nevada, Spain. Nor Geogr Tidsskr 55:253–260

    Article  Google Scholar 

  • Urdea P (1985) Câteva aspecte ale reliefului periglaciar din Munţii Retezat. Analele Ştiințifice ale Universității “Al. I. Cuza” din Iaşi, Secţ. IIb. Geol Geogr 31:73–76 (in Romanian)

    Google Scholar 

  • Urdea P (1992) Rock glaciers and periglacial phenomena in the Southern Carpathians. Permafrost Periglac Process 3:267–273

    Article  Google Scholar 

  • Urdea P (1993) Permafrost and periglacial forms in the Romanian Carpathians. In: Proceedings of sixth international conference on permafrost, Beijing, University of Technology Press 1, pp 631–637

    Google Scholar 

  • Urdea P (1998) Rock glaciers and permafrost reconstruction in the Southern Carpathians Mountains, Romania. In: Proceedings of seventh international conference on permafrost, Yellowknife, Canada, Collection Nordicana 57, pp 1063–1069

    Google Scholar 

  • Vasile M, Vespremeanu-Stroe A, Popescu R (2014) Air versus ground temperature data in the evaluation of frost weathering and ground freezing. Examples from the Romanian Carpathians. Rev Geomorfologie 16:61–70

    Google Scholar 

  • Vespremeanu-Stroe A, Urdea P, Popescu R, Vasile M (2012) Rock glacier activity in the Retezat Mountains, Southern Carpathians, Romania. Permafrost Periglac Process 23:127–137

    Article  Google Scholar 

  • Wakonigg H (1996) Unterkühlte Schutthalden. Arbeiten aus dem Institut für Geographie der Karl-Franzens-Universität Graz (Beiträge zur Permafrostforschung in Österreich) 33:209–223

    Google Scholar 

  • Warhaftig C, Cox A (1959) Rock glaciers in the Alaska Range. Bull Geol Soc Am 70:383–436

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a postdoctoral scholarship offered by the University of Bucharest Research Institute (ICUB) to RP in 2015. The contribution of colleagues from both University of Bucharest and West University of Timișoara is greatly appreciated. Many thanks go to Mirela Vasile and Nicolae Cruceru for their valuable scientific assistance, data processing and long-term fieldwork involvement. The effort of Loredana Bîzgan and Monica Voinea in thermal and grain size data processing and also in fieldwork assistance was of great help. The colleagues Florin Tătui, Luminița Preoteasa, Alexandru Manoliu, Sabin Rotaru and Florin Zăinescu had an important contribution in fieldwork campaigns. Adrian Ardelean, Flavius Sîrbu, Raul Șerban and Patrick Chiroiu from the West University of Timișoara had a major role in obtaining and processing of the GPR and ERT data presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Răzvan Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popescu, R., Onaca, A., Urdea, P., Vespremeanu-Stroe, A. (2017). Spatial Distribution and Main Characteristics of Alpine Permafrost from Southern Carpathians, Romania. In: Radoane, M., Vespremeanu-Stroe, A. (eds) Landform Dynamics and Evolution in Romania. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-32589-7_6

Download citation

Publish with us

Policies and ethics