Skip to main content

Snow Avalanche Activity in Southern Carpathians (Romanian Carpathians)

  • Chapter
  • First Online:
Landform Dynamics and Evolution in Romania

Part of the book series: Springer Geography ((SPRINGERGEOGR))

  • 842 Accesses

Abstract

Snow avalanches represent an undeniable reality in the Romanian Carpathians both as a geomorphic process and as a type of hazard, and cause damage to transportation routes or tourism infrastructure and losses of human lives. In this context, the past snow avalanche activity is poorly evaluated, even if these mountains are known for the high occurrence of snow avalanches. The scientific analysis of snow avalanches using dendrogeomorphologic approach is recent in the Romanian Carpathians. The first results were obtained in the Făgăraș Massif and the Bucegi Mountains, located in the eastern part of the Southern Carpathians (Romanian Carpathians). The present contribution aims to analyse the snow avalanche chronology using dendrogeomorphologic approach, to reconstruct temporal patterns of past snow avalanches (magnitude, return period, synchronicity), and to examine the relationships between winter types with major snow avalanche events. We performed a dendrogeomorphic analysis based on 182 Picea abies in Făgăraș Massif and 99 Picea abies 77 Larix decidua Mill in Bucegi Mountains. We sampled trees in three snow avalanche tracks in Făgăraș massif and in three snow avalanche tracks in Bucegi Mountains and obtained 392 and 352 samples, respectively. Our results from tree ring records yielded 19 and 17 snow avalanche winters in the 1968–2011 chronology and 94 snow avalanche winters in the 1852–2013 chronology in the Făgăraş Massif and 32 avalanche winters in the 1954–2011 chronology, 27 avalanche winters in the 1962–2012 chronology and 30 avalanche winters in the 1964–2011 chronology in Bucegi Mountains, respectively. We identified three avalanche types: small avalanches with Avalanche Activity Index (AAI) between 10 and 20 %, large avalanches with AAI between 21 and 30 % and very large avalanches with AAI > 31 %. We also obtained a similar return period ranging from 13 to 14.9 years in the Făgăraş Massif and from 13.1 to 15.2 years in the Bucegi Mountains. Eight avalanche events were synchronous in two or three stands in the Făgăraș Massif and five avalanche events in the Bucegi Mountains. To determine the relationship between snow avalanches and winter temperatures, we use the Winter Standardized Index (WSI) between 1979 and 2012 for the Bâlea Lac weather station in the Făgăraș Massif and between 1961 and 2011 for the Vf. Omu and Sinaia weather stations in Bucegi Mountains. We obtained a correlation between these parameters and our dendrogeomorphological results; the probability of major snow avalanche occurrence was highest during cold and normal winters in Făgăraș Massif and cold in Bucegi Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139

    Google Scholar 

  • Ammann W (2003) Les avalanches. Evénements extrêmes et changements climatiques. Organe consultatif sur les changements climatiques (OcCC), Berne, pp 83–86

    Google Scholar 

  • Bebi P, Kienast F, Schönenberger W (2001) Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. For Ecol Manag 145:3–14

    Article  Google Scholar 

  • Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K (2008) Traumatic resin ducts in Larix decidua trees impacted by debris flows. Tree Physiol 28:255–263

    Article  Google Scholar 

  • Boucher D, Filion L, Hétu B (2003) Reconstitution dendrochronologique et fréquence des grosses avalanches de neige dans un couloir subalpin du mont Hog’s Back, Gaspésie centrale (Québec). Géog Phys Quatern 57:159–168

    Google Scholar 

  • Braam RR, Weiss EJJ, Burrough PA (1987) Spatial and temporal analysis of mass movement using dendrochronology. Catena 14(6):573–584

    Article  Google Scholar 

  • Bryant CL, Butler DR, Vitek JD (1989) A statistical analysis of tree-ring dating in conjunction with snow avalanches: comparison of on-path versus off-path responses. Environ Geol Water Sci 14(1):53–59

    Article  Google Scholar 

  • Burrows CJ, Burrows VL (1976) Procedure for the study of snow avalanche chronology using growth layers of woody plants. University of Colorado, Institute of Arctic and Alpine, Research Occasional Paper. 23–54

    Google Scholar 

  • Butler DR (1979) Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arct Antarct Alp Res 11:17–32

    Article  Google Scholar 

  • Butler DR (1986) Snow avalanche hazards in Glacier National Park, Montana: Meteorologic and climatologic aspects. Phys Geogr 7(1):72–87

    Google Scholar 

  • Butler DR (1998) Teaching natural hazards: the use of snow avalanches in demonstrating and addressing geographic topics and principles. J Geogr 87(6):212–225

    Article  Google Scholar 

  • Butler DP, Malanson GP (1985a) A reconstruction of snow-avalanche characteristics in Montana, USA, using vegetative indicators. J Glaciol 31:185–187

    Google Scholar 

  • Butler DR, Malanson GP (1985b) A history of high-magnitude snow avalanches, Southern Glacier National Park, Montana, U.S.A. Mt Res Dev 5(2):175–182

    Article  Google Scholar 

  • Butler DR, Sawyer CF (2008) Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Nat Hazards Earth Syst Sci 8:303–309

    Article  Google Scholar 

  • Butler DR, Malanson GP, Oelfke JG (1987) Tree-ring analysis and natural hazard chronologies: minimum sample sizes and index values. Prof Geogr 39(1):41–47

    Article  Google Scholar 

  • Butler DR, Sawyer CF, Maas JA (2010) Tree-ring dating of snow avalanches in Glacier National Park, Montana, USA. In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards, a state-of-the-art. Springer, Heidelberg, pp 33–44

    Google Scholar 

  • Carrara PE (1979) The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geol Soc Am Bull 90:773–780

    Article  Google Scholar 

  • Casteller A, Stöckli V, Villalba R, Mayer AC (2007) An evaluation of dendroecological indicators of snow avalanches in the Swiss Alps. Arct Antarct Alp Res 39:218–228

    Article  Google Scholar 

  • Casteller A, Christen M, Villalba R, Martínez-Stöckli HV, Leiva JC, Bartelt P (2008) Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina. Nat Hazards Earth Syst Sci 8:433–443

    Article  Google Scholar 

  • Casteller A, Villalba R, Araneo D, Stöckli V (2011) Reconstructing temporal patterns of snow avalanches at Lago del Desierto, southern Patagonian Andes. Cold Region Sci Technol 67:68–78

    Article  Google Scholar 

  • Chiroiu P, Stoffel M, Onaca A, Urdea P (2015a) Testing dendrogeomorphic approaches and thresholds to reconstruct snow avalanche activity in the Făgăraș Mountains (Romanian Carpathians). Quat Geochronol 27:1–10

    Article  Google Scholar 

  • Chiroiu P, Ardelean AC, Onaca A, Voiculescu M, Ardelean F (2015b) Assessing the anthropogenic impact on geomorphic processes using tree-rings: a case study in the Făgăraș Mountains (Romanian Carpathians). Carpathian J Earth Environ Sci 11(1):27–36

    Google Scholar 

  • Corona C, Rovera G, Lopez SJ, Stoffel M, Perentine P (2010) Spatio-temporal reconstruction of snow avalanche activity using tree-rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 83:107–118

    Article  Google Scholar 

  • Corona C, Saez JP, Stoffel M, Bonnefoy M, Richard D, Astrade L, Berger F (2012) How much of the real avalanche activity can be captured with tree-rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Region Sci Technol 74–75:31–42

    Article  Google Scholar 

  • Corona C, Lopez Saez J, Stoffel M, Rovéra G, Edouard J-P, Berger F (2013) Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. The Holocene 23:292–304

    Article  Google Scholar 

  • Decaulne A, Sæmundsson Þ (2008) Dendrogeomorphology as a tool to unravel snow avalanche activity; preliminary results from the Fnjóskadalur test site, Northern Iceland. Norsk Geografisk Tidsskrift-Norwegia. J Geogr 62:55–65

    Google Scholar 

  • Decaulne A, Eggertsson Ó, Sæmundsson Þ (2012) A first dendrogeomorphologic approach of snow avalanche magnitude frequency in Northern Iceland. Geomorphology 167–168:35–44

    Article  Google Scholar 

  • Decaulne A, Eggertsson Ó, Laute K, Beylich AA (2013) Dendrogeomorphologic approach for snow-avalanche activity reconstruction in a maritime cold environment (upper Erdalen, Norway). Zeitschrift für Geomorphologie 57:55–68

    Article  Google Scholar 

  • Decaulne A, Eggertsson Ó, Laute K, Beylich AA (2014) 100-year extreme snow-avalanche record based on tree-ring research in upper Bødalen, inner Nordfjord, Western Norway. Geomorphology 218:3–15

    Article  Google Scholar 

  • Dubé S, Filion L, Hétu B (2004) Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arct Antarct Alp Res 36:555–564

    Article  Google Scholar 

  • Francou B (1993a) Hautes montagnes, passion d’explorations. MASSON

    Google Scholar 

  • Francou B (1993b) Une représentation factorielle des cryospheres d’altitude dans le monde. Géomorphologie et aménagement de la montagne, Centre de géomorphologie, Caen, pp 75–87

    Google Scholar 

  • Fuchs S, Bründl M (2005) Damage potential and losses resulting from snow avalanches in settlements of the Canton of Grisons Switzerland. Nat Hazards 34:53–69

    Article  Google Scholar 

  • Fuchs S, Bründl M, Stötter J (2004) Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland. Nat Hazards Earth Syst Sci 4:263–275

    Article  Google Scholar 

  • Fuchs S, Keiler M, Zischg A, Bründl M (2005) The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Natural Hazards and Earth System Sciences 5:893–901

    Article  Google Scholar 

  • Garavaglia V, Pelfini M (2011) The role of border areas for dendrochronological investigations on catastrophic snow avalanches: a case study from the Italian Alps. Catena 87:209–215

    Article  Google Scholar 

  • Germain D, Filion L, Hétu B (2005) Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada. Can J Earth Sci 42:2103–2116

    Article  Google Scholar 

  • Germain D, Filion L, Hétu B (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Clim Change 92:141–167

    Article  Google Scholar 

  • Germain D, Hétu B, Filion L (2010) Tree-ring based reconstruction of past snow avalanche events and risk assessment in Northern Gaspé Peninsula (Québec, Canada). In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards, a state-of-the-art. Springer, Heidelberg, pp 51–73

    Chapter  Google Scholar 

  • Hebertson EG, Jenkins MJ (2003) Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Reg Sci Technol 37:315–332

    Article  Google Scholar 

  • Höller P (2007) Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43:81–101

    Article  Google Scholar 

  • Höller P (2009) Avalanche cycles in Austria: an analysis of the major events in the last 50 years. Nat Hazards 48:399–424

    Article  Google Scholar 

  • Ives JD, Mears AI, Carrara PE, Bovis MJ (1976) Natural hazards in Mountain Colorado. Ann Assoc Am Geogr 66:129–144

    Article  Google Scholar 

  • Jamieson B, Stethem C (2002) Snow avalanche hazards and management in Canada: challenges and progress. Nat Hazards 26:35–53

    Article  Google Scholar 

  • Jenkins MJ, Hebertson EG (1994) Using vegetative analysis to determine the extent and frequency of avalanches in Little Cotonwood Canyon, Utah. In: Proceedings of the international snow science workshop (Snowbird Utah, 30 Oct–3 Nov 1994). American Avalanche Institute, Wilson, WI, pp 91–103

    Google Scholar 

  • Kajimoto T, Daimaru H, Okamoto T, Otani T, Onodera H (2004) Effects of snow avalanche disturbance on regeneration of subalpine Abies mariesii forest, northern Japan. Arct Antarct Alp Res 36:436–445

    Article  Google Scholar 

  • Köse N, Aydın A, Akkemik Ü, Yurtseven H, Güner T (2010) Using tree-ring signals and numerical model to identify the snow avalanche tracks in Kastamonu, Turkey. Nat Hazards Earth Syst Sci 54:435–449

    Google Scholar 

  • Larocque S, Hétu H, Filion L (2001) Geomorphic and dendroecological impacts of slushflows in central Gaspé peninsula (Québec, Canada). Geogr Ann 83A:191–201

    Article  Google Scholar 

  • Laxton SC, Smith DJ (2009) Dendrochronological reconstruction of snow avalanche activity in the Lahul Himalaya, Northern India. Nat Hazards 49:459–467

    Article  Google Scholar 

  • Luckman BH (1977) The geomorphic activity of snow avalanches. Geogr Ann 59A(1–2):31–48

    Article  Google Scholar 

  • Luckman BH (1978) Geomorphic work of snow avalanches in the Canadian Rocky Mountains. Arct Alp Res 10(2):261–276

    Article  Google Scholar 

  • Luckman BH (2010) Dendrogeomorphology and snow avalanche research. In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree-rings and natural hazards: a state-of-the-art. Springer, Heidelberg, New York, pp 27–35

    Chapter  Google Scholar 

  • Luckman BH, Frazer GW (2001) Dendrogeomorphic investigations of snow avalanche tracks in the Canadian Rockies. In: Unpublished poster presented at the international conference on the future of dendrochronology, Davos

    Google Scholar 

  • Malik I, Owczarek P (2009) Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes—Central Europe). Geochronometria 34:57–66

    Article  Google Scholar 

  • McClung DM (2001) Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Ann Glaciol 32:223–229

    Article  Google Scholar 

  • McClung DM, Schaerer P (2006) The Avalanche handbook. The Mountaineers, Seattle, USA

    Google Scholar 

  • Micu D (2009) Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorol Atmos Phys 105:1–16

    Article  Google Scholar 

  • Molina R, Muntán E, Andreu L, Furdada G, Oller P, Gutiérrez E, Martìnez P, Vilaplana JM (2004) Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Núria, eastern Pyrenees, Spain. Ann Glaciol 38:159–165

    Article  Google Scholar 

  • Mundo IA, Barrera MD, Roig FA (2007) Testing the utility of Nothofagus pumilio for datinga snow avalanche in Tierra del Fuego, Argentina. Dendrochronologia 25:19–28

    Article  Google Scholar 

  • Muntán E, Andreu L, Oller P, Gutiérrez E, Martinez P (2004) Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex project in the Pyrenees. Ann Glaciol 38:173–179

    Article  Google Scholar 

  • Muntán E, Garcia C, Oller P, Marti G, Garcia A, Gutierrez E (2009) Reconstructing snow avalanches in the Southeastern Pyrenees. Natural Hazards and Earth System Sciences 9:1599–1612

    Article  Google Scholar 

  • Patten RS, Knight DM (1994) Snowavalanches and vegetation pattern in Cascade Canyon, Grand Teton National Park, Wyoming, USA. Arct Alp Res 26:35–41

    Article  Google Scholar 

  • Potter N (1969) Tree-ring dating of snow avalanche tracks and the geomorphic activity of avalanches, northern Absaroka Mountains, Wyoming, Boulder. CO. Geol. Soc. Am. Spec. Pap. 123:141–165

    Google Scholar 

  • Rapp A (1960) Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geogr Ann 42:73–200

    Google Scholar 

  • Rayback SA (1998) A dendrogeomorphological analysis of snow avalanches in the Colorado Front Range, USA. Phys Geogr 19:502–512

    Google Scholar 

  • Reardon BA, Pederson GT, Caruso CJ, Fagre DB (2008) Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree-rings in Glacier National Park, Montana, U.S.A. Arct Antarct Alp Res 40(1):148–160

    Article  Google Scholar 

  • Schaerer P (1972) Terrain and vegetation of snow avalanche sites at Rogers Pass, British Columbia. In: Slaymaker O, McPherson HJ (eds) Mountain geomorphology: geomorphological processes in the Canadian Cordillera. Tantalus Research Ltd. Edition, Vancouver B.C., pp 215–222

    Google Scholar 

  • Schneebeli M, Bebi P (2004) Snow and avalanche control. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier, Oxford, pp 397–402

    Chapter  Google Scholar 

  • Schönenberger W, Noack A, Thee P (2005) Effect of timber removal from windthrow slopes on the risk of snow avalanches and rockfall. For Ecol Manag 213:197–208

    Article  Google Scholar 

  • Schweizer J, Jamieson B, Schneebeli M (2003) Snow avalanche formation. Rev Geophys 41:2–25

    Article  Google Scholar 

  • Shroder JF (1980) Dendrogeomorphology: review and new techniques of tree-ring dating. Prog Phys Geogr 4:161–188

    Article  Google Scholar 

  • Smith L (1973) Indication of snow avalanche periodicity through interpretation of vegetation patterns in the North Cascades, Washington. Methods of Avalanche control on Washington mountain highways—third annual report. Washington State Highway Commission Department of Highways, Olympia, WA, pp 55–101

    Google Scholar 

  • Stethem C, Jamieson B, Liverman D, Germain D, Walker S (2003) Snow avalanche hazard in Canada—a review. Nat Hazards 28:487–515

    Article  Google Scholar 

  • Stoffel M, Hitz OM (2008) Snow avalanche and rockfall impacts leave different anatomical signatures in tree rings of Larix decidua. Tree Physiol 28(11):1713–1720

    Article  Google Scholar 

  • Stoffel M, Schneuwly D, Bollschweiler M, Lièvre I, Delaloye R, Myint M, Monbaron M (2005) Analyzing rockfall activity (1600–2002) in a protection forest—a case study using dendrogeomorphology. Geomorphology 68:224–241

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M, Hassler GR (2006) Differentiating events on a cone influenced by debris-flow and snow avalanche activity—a dendrogeomorphological approach. Earth Surf Proc Land 31:1424–1437

    Article  Google Scholar 

  • Stoffel M, Butler DR, Corona C (2013) Mass movements and tree rings: a guide to dendrogeomorphic field sampling and dating. Geomorphology 200:106–120

    Article  Google Scholar 

  • Strunk H (1997) Dating of geomorphological processes using dendrogeomorphological methods. Catena 31:137–151

    Article  Google Scholar 

  • Szymczak S, Bollschweiler M, Stoffel M, Dikau R (2010) Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomorphology 116:107–114

    Article  Google Scholar 

  • Teich M, Marty C, Gollut C, Grêt-Regamey A, Bebi P (2012) Snow and weather conditions associated with avalanche releases in forests: Rare situations with decreasing trends during the last 41 years. Cold Reg Sci Technol 83–84:77–88

    Article  Google Scholar 

  • Tumajer J, Treml V (2015) Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech Republic. Dendrochronologia 34:1–9

    Article  Google Scholar 

  • Vanni M (1965) Pour une classification géographique des avalanches. In: International symposium on scientific aspects of snow and ice avalanches. Report and discussions. Davos, pp 397–407

    Google Scholar 

  • Viglietti D, Letey S, Motta R, Maggioni M, Freppaz M (2010) Snow avalanche release in forest ecosystems: a case study in the Aosta Valley Region (NW-Italy). Cold Reg Sci Technol 64(2):167–173

    Article  Google Scholar 

  • Voiculescu M (2004) Types of Avalanches and their morphogenetical impact in Făgăraş Masiff-Southern Carpathians (Romania). Geomorphologia Slovaca, Číslo 1, ročník 4, Bratislava, pp 72–81

    Google Scholar 

  • Voiculescu M (2009) Snow avalanche hazards in the Făgăraş massif (Southern Carpathians): Romanian Carpathians—Management and perspectives. Nat Hazards 51(3):459–475

    Article  Google Scholar 

  • Voiculescu M (2010) L’utilisation de la method dendrochronologique pour la reconstitution de la grande avalanche de neige du fevrier 1969 de Monts Bucegi - Carpates Meridionales, Roumanie. In: Surdeanu V, Stoffel M, Pop O (eds) Dendrogeomorphologie et dendroclimatologie– methodes de reconstitution des milieux geomorphologiques et climatiques des regions montagneuses. Presa Universitară Clujeană, pp 125–149

    Google Scholar 

  • Voiculescu M (2014) Patterns of the dynamics of human-triggered snow avalanches at the Făgăraş massif (Southern Carpathians), Romanian Carpathians. Area 46(3):328–336

    Article  Google Scholar 

  • Voiculescu M, Ardelean F (2012) Snow avalanche—disturbance of high mountain environment. Case study—the Doamnei glacial valley the Făgăraş massif-Southern Carpathians, Romanian Carpathians. Carpathian J Earth Environ Sci 7(1):95–108

    Google Scholar 

  • Voiculescu M, Onaca A (2013) Snow avalanche assessment in the Sinaia ski area (Bucegi Mountains, Southern Carpathians) using the dendrogeomorphology method. Area 45(1):109–122

    Article  Google Scholar 

  • Voiculescu M, Onaca A (2014) Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Reg Sci Technol 104–105:63–75

    Article  Google Scholar 

  • Voiculescu M, Popescu F (2011) The management of Snow avalanches in the Ski Areas in Southern Carpathians. Case study: Făgăraş massif and Bucegi Mountains. In: Zhelezov G (ed) Sustainable Development in Mountain Regions: Southeastern Europe. Springer, New York, pp 103–120

    Google Scholar 

  • Voiculescu M, Ardelean F, Onaca A, Török-Oance M (2011) Analysis of snow avalanche potential in Bâlea glacial area – Făgăraş massif, (Southern Carpathians - Romanian Carpathians). Zeitschrift für Geomorphologie 55(3):291–316

    Article  Google Scholar 

  • Voiculescu M, Onaca A, Chiroiu P (2013) L’analyse de la dynamique forestière et de l’impact mécanique des avalanches de neige sur les arbres en utilisant la méthode dendrochronologique. Étude de la vallée glaciaire Bâlea – Massif Făgăraş (Carpates Méridionales, Roumanie). In: Decaulne et al (eds) Arbres & dynamiques. Maison des Sciences de l’homme, Presses Universitaires Blaise Pascal, Clermont Ferrand, p 89–105

    Google Scholar 

  • Weir P (2002) Snow avalanche. Management in forested terrain. Ministry of Forestry, Forest Science Program, British Columbia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Voiculescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Voiculescu, M. (2017). Snow Avalanche Activity in Southern Carpathians (Romanian Carpathians). In: Radoane, M., Vespremeanu-Stroe, A. (eds) Landform Dynamics and Evolution in Romania. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-32589-7_31

Download citation

Publish with us

Policies and ethics